Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/129585
Type: Thesis
Title: Video Game Acoustics: Perception-Based Sound Design for Interactive Virtual Spaces Submitted
Author: Probert, Benjamin Kym
Issue Date: 2020
School/Discipline: Elder Conservatorium of Music
Abstract: Video game acoustics are the various aspects of sound physics that can be represented in a video game, as well as the perception and interpretation of those sound physics by a player. At its core, the research here aims to identify the many functions and considerations of acoustics in interactive virtual spaces, while also building a theoretical foundation for video game acoustics by gathering relevant research from a wide variety of disciplines into a single video game context. The writing here also functions as an informative resource for video game sound designers and is primarily written for that audience. Through a review of the literature it is found that there is research available across many different disciplines that is relevant to video game acoustics, but none that bring it all together and fully explore acoustics in a video game context. Small discussions related to the topic occur sporadically throughout various fields, however there are few of any detailed focus and even fewer with video game sound designers as their intended audience. This scattering and dilution of relevant information validates the need for its distillation into a dedicated discussion. The writing here addresses this gap in the literature and in doing so uncovers aspects of video game acoustics that have not previously been given adequate attention. This thesis accomplishes its aims by combining an interdisciplinary background with an emphasis on simplification to suit the creative field of game sound design. A theoretical foundation is built from several different disciplines, including Acoustics, auditory perception, acoustic simulation, sound theory, spatial presence, film sound, and of course game sound. A twofold physics/perception approach is used to analyse video game acoustics. The human perception of sound has various strengths and weaknesses, which help to identify the aspects of sound physics that are important to provide a player as well as aspects that may be ignored for efficiency reasons. The thesis begins by revealing the many considerations and implications of incorporating acoustics into a video game, followed by an exploration of the perceptual functions of acoustics in virtual spaces. Several conceptual frameworks are then offered to address some of the problems discovered in the previous sections. By the end of the thesis it will be shown that the main purpose of video game acoustics is to provide a player with a natural experience of sound. People working in the video game industry may use the research presented here to cultivate an understanding of how humans can interact with video games through sound physics, and why it is important to improve the quality of this interaction.
Advisor: Haines, Christian
Whittington, Stephen
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, Elder Conservatorium of Music, 2020
Keywords: video game
videogame
acoustics
virtual space
perception
sound design
game audio
game sound
video game acoustics
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Probert2020_PhD.pdf4.81 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.