Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/135546
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Controlling the Cation Exsolution of Perovskite to Customize Heterostructure Active Site for Oxygen Evolution Reaction
Author: Wei, Y.
Zheng, Y.
Hu, Y.
Huang, B.
Sun, M.
Da, P.
Xi, P.
Yan, C.-H.
Citation: ACS Applied Materials and Interfaces, 2022; 14(22):25638-25647
Publisher: American Chemical Society
Issue Date: 2022
ISSN: 1944-8244
1944-8252
Statement of
Responsibility: 
Yicheng Wei, Yao Zheng, Yang Hu, Bolong Huang, Mingzi Sun, Pengfei Da, Pinxian Xi, and Chun-Hua Yan
Abstract: Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts offering an ordered atomic arrangement and a highly flexible electronic structure. Currently, understanding and adjusting the dynamic reconstruction of perovskite during the OER process remains a formidable challenge. Here, we report the artificial construction of a heterostructure by the cation exsolution of perovskite to control the active site formation and reconstruction. The deliberately made La deficiency in LaNiO3 perovskite facilitates the original segregation of NiO from the parent matrix and forms a well-defined interface between perovskite parent and NiO exsolution phase. The dynamic formation process of such heterojunction was studied by density functional theory computation and high quality imaging characterization. Due to the valence redistribution of Ni ions caused by the interfacial electron transfer, the in situ formed LaNiO3/NiO heterostructure displays high electroactivity. Therefore, the LaNiO3/ NiO heterostructure exhibits a dynamic surface evolution feature with the generation of the highly active NiOOH layer under a low anodic potential (∼1.35 V vs RHE) during the OER process, which is very different from the conventional LaNiO3 with a stoichiometry and NiO catalysts. With the newly formed heterostructure, the reconstructed catalysts impart a 4.5-fold increase in OER activity and a 3-fold improvement in stability against La and Ni dissolution during the OER process. This work provides a feasible interface engineering strategy for artificially controlling the reconstruction of the active phase in high-performance perovskite-based electrocatalytic materials.
Keywords: cation exsolution; perovskite oxide; heterostructure; oxygen evolution reaction; electrocatalysis
Rights: © 2022 American Chemical Society
DOI: 10.1021/acsami.2c02861
Grant ID: http://purl.org/au-research/grants/arc/DP190103472
http://purl.org/au-research/grants/arc/FT200100062
Published version: http://dx.doi.org/10.1021/acsami.2c02861
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.