High Performance Magnetically Separable G‐C3N4/γ‐Fe2O3/TiO2 Nanocomposite with Boosted Photocatalytic Capability towards the Cefixime Trihydrate Degradation under Visible‐Light

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/108796
Información del item - Informació de l'item - Item information
Título: High Performance Magnetically Separable G‐C3N4/γ‐Fe2O3/TiO2 Nanocomposite with Boosted Photocatalytic Capability towards the Cefixime Trihydrate Degradation under Visible‐Light
Autor/es: Jahanshahi, Roya | Sobhani, Sara | Sansano, Jose M.
Grupo/s de investigación o GITE: Síntesis Asimétrica (SINTAS)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Orgánica | Universidad de Alicante. Instituto Universitario de Síntesis Orgánica
Palabras clave: Cefixime trihydrate | Heterogeneous catalysis | Photocatalysis | Visible-light | Wastewater treatment
Área/s de conocimiento: Química Orgánica
Fecha de publicación: 31-ago-2020
Editor: Wiley-VCH GmbH
Cita bibliográfica: ChemistrySelect. 2020, 5(32): 10114-10127. https://doi.org/10.1002/slct.202002682
Resumen: A magnetically separable g‐C3N4/γ‐Fe2O3/TiO2 nanocomposite is synthesized as an intensely effectual visible‐light‐driven photocatalyst. It is fully characterized by FT‐IR, XPS, XRD, VSM, DRS, SEM, TEM, BET, EDS, and elemental mapping techniques. Based on the Tauc plot of (αhν)2 vs. hυ, the value of band gap energy for g‐C3N4/γ‐Fe2O3/TiO2 is estimated to be 2.6 eV, which proves the high capability of the catalyst to enhance the photoinduced electron‐holes separation and improves its visible‐light photocatalytic performance. The high photocatalytic activity of this catalyst towards the cefixime trihydrate (CEF) degradation, under visible‐light radiation can be ascribed to the synergistic optical effects between g‐C3N4, γ‐Fe2O3, and TiO2. Using central composite design (CCD) based on response surface methodology (RSM), the maximum degradation efficiency of about 98 % was obtained at the optimal conditions comprising the CEF amount of 20 mg/L, photocatalyst value of 0.04 g/L, irradiation intensity of 9 W/m2, and pH of 5.5, at 90 min. Utilizing an innocuous visible‐light source, almost complete mineralization of CEF (based on TOC analysis), using a very low amount of photocatalyst, applying air as the oxidant, and convenient magnetic separation of the catalyst from the reaction media and its ease of recycling for at least seven consecutive runs are the major highlights of this protocol.
Patrocinador/es: Financial support of this project by the University of Birjand Research Council and the XPS facilities of the University of Alicante is appreciated.
URI: http://hdl.handle.net/10045/108796
ISSN: 2365-6549
DOI: 10.1002/slct.202002682
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 Wiley-VCH GmbH
Revisión científica: si
Versión del editor: https://doi.org/10.1002/slct.202002682
Aparece en las colecciones:INV - SINTAS - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailJahanshahi_etal_2020_ChemistrySelect_final.pdfVersión final (acceso restringido)5,81 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailJahanshahi_etal_2020_ChemistrySelect_revised.pdfVersión revisada (acceso abierto)2,25 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.