(216) Kleopatra, a low density critically rotating M-type asteroid

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/117984
Información del item - Informació de l'item - Item information
Título: (216) Kleopatra, a low density critically rotating M-type asteroid
Autor/es: Marchis, Franck | Jorda, Laurent | Vernazza, Pierre | Brož, Miroslav | Hanuš, Josef | Ferrais, Marin | Vachier, Frédéric | Rambaux, Nicolas | Marsset, Michaël | Viikinkoski, Matti | Jehin, Emmanuel | Benseguane, Selma | Podlewska-Gaca, Edyta | Carry, Benoît | Drouard, Alexis | Fauvaud, S. | Birlan, Mirel | Berthier, Jérôme | Bartczak, Przemyslaw | Dumas, Christophe | Dudziński, Grzegorz | Ďurech, Josef | Castillo-Rogez, Julie | Cipriani, Fabrice | Colas, François | Fétick, Romain | Fusco, Thierry | Grice, Jonny | Kryszczynska, Agnieszka | Lamy, Philippe | Marciniak, Anna | Michalowski, Tadeusz | Michel, Patrick | Pajuelo, Myriam | Santana-Ros, Toni | Tanga, Paolo | Vigan, Arthur | Witasse, Olivier | Yang, Bin
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Techniques: high angular resolution | Minor planets, asteroids: individual: 216 Kleopatra
Área/s de conocimiento: Física Aplicada
Fecha de publicación: 9-sep-2021
Cita bibliográfica: Astronomy & Astrophysics. 2021, 653: A57. https://doi.org/10.1051/0004-6361/202140874
Resumen: Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of ~5 g cm−3, which is by far the highest for a small Solar System body. Such a high density implies a high metal content as well as a low porosity which is not easy to reconcile with its peculiar “dumbbell” shape. Aims. Given the unprecedented angular resolution of the VLT/SPHERE/ZIMPOL camera, here, we aim to constrain the mass (via the characterization of the orbits of the moons) and the shape of (216) Kleopatra with high accuracy, hence its density. Methods. We combined our new VLT/SPHERE observations of (216) Kleopatra recorded during two apparitions in 2017 and 2018 with archival data from the W. M. Keck Observatory, as well as lightcurve, occultation, and delay-Doppler images, to derive a model of its 3D shape using two different algorithms (ADAM, MPCD). Furthermore, an N-body dynamical model allowed us to retrieve the orbital elements of the two moons as explained in the accompanying paper. Results. The shape of (216) Kleopatra is very close to an equilibrium dumbbell figure with two lobes and a thick neck. Its volume equivalent diameter (118.75 ± 1.40) km and mass (2.97 ± 0.32) × 1018 kg (i.e., 56% lower than previously reported) imply a bulk density of (3.38 ± 0.50) g cm−3. Such a low density for a supposedly metal-rich body indicates a substantial porosity within the primary. This porous structure along with its near equilibrium shape is compatible with a formation scenario including a giant impact followed by reaccumulation. (216) Kleopatra’s current rotation period and dumbbell shape imply that it is in a critically rotating state. The low effective gravity along the equator of the body, together with the equatorial orbits of the moons and possibly rubble-pile structure, opens the possibility that the moons formed via mass shedding. Conclusions. (216) Kleopatra is a puzzling multiple system due to the unique characteristics of the primary. This system certainly deserves particular attention in the future, with the Extremely Large Telescopes and possibly a dedicated space mission, to decipher its entire formation history.
Patrocinador/es: This material is partially based upon work supported by the National Science Foundation under Grant No. 1743015. This work has been supported by the Czech Science Foundation through grant 20-08218S (J. Hanuš, J. Ďurech), 21-11058S (M. Brož) and by the Charles University Research program No. UNCE/SCI/023. P. Vernazza, A. Drouard, M. Ferrais and B. Carry were supported by CNRS/INSU/PNP. M.M. was supported by the National Aeronautics and Space Administration under grant No. 80NSSC18K0849 issued through the Planetary Astronomy Program. The work of TSR was carried out through grant APOSTD/2019/046 by Generalitat Valenciana (Spain). This work was supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant FRFC 2.5.594.09.F. TRAPPIST-North is a project funded by the University of Liège, and performed in collaboration with Cadi Ayyad University of Marrakesh. E. Jehin is a FNRS Senior Research Associate. The data presented herein were obtained partially at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. KeckFoundation.
URI: http://hdl.handle.net/10045/117984
ISSN: 0004-6361 (Print) | 1432-0746 (Online)
DOI: 10.1051/0004-6361/202140874
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © ESO 2021
Revisión científica: si
Versión del editor: https://doi.org/10.1051/0004-6361/202140874
Aparece en las colecciones:Personal Investigador sin Adscripción a Grupo

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMarchis_etal_2021_A&A.pdf27,41 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.