Activation routes for high surface area graphene monoliths from graphene oxide colloids

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/37065
Información del item - Informació de l'item - Item information
Título: Activation routes for high surface area graphene monoliths from graphene oxide colloids
Autor/es: Wanga, Shuwen | Tristan, Ferdinando | Minami, Daiki | Fujimori, Toshihiko | Cruz Silva, Rodolfo | Terrones, Mauricio | Takeuchi, Kenji | Teshima, Katsuya | Rodríguez Reinoso, Francisco | Endo, Morinobu | Kaneko, Katsumi
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: Graphene monoliths | Graphene oxide colloids | Activation routes | High surface area | Nanoporous carbons
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 30-abr-2014
Editor: Elsevier
Cita bibliográfica: Carbon. 2014, Accepted Manuscript, Available online 30 April 2014. doi:10.1016/j.carbon.2014.04.071
Resumen: Graphene monoliths made from graphene oxide colloids by unidirectional freeze-drying method were activated by typical activation processes of CO2 activation, chemical activation using ZnCl2 or H3PO4, and KOH activation. The porosity development of graphene monolith markedly depends on the activation method. The monoliths with highest surface area are obtained by the KOH activation method; only the KOH activation is effective for production of the graphene monolith of which surface area is in the range of 1760–2150 m2 g−1. The mechanism of the porosity development by KOH activation method is proposed. This work provides a promising route for the bottom-up design of pore width-tunable nanoporous carbons.
Patrocinador/es: K.K., F.T., T.F., R.C-S, M.T. and M.E. were supported by Exotic Nanocarbons, Japan Regional Innovation Strategy Program by the Excellence, JST. This work was supported by Grant-in-Aid for Scientific Research (A) (24241038) and Concert-Japan project: Efficient Energy Storage and Distribution, JST. D. M., and this study were partially supported by JST CREST “Creation of Innovative Functional Materials with Advanced Properties by Hyper-nano-space Design”.
URI: http://hdl.handle.net/10045/37065
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2014.04.071
Idioma: eng
Tipo: info:eu-repo/semantics/article
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.carbon.2014.04.071
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Wang_etal_Carbon.pdfAccepted Manuscript (acceso abierto)1,81 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.