Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8990

    Título
    Knowledge based recursive non-linear partial least squares (RNPLS)
    Autor
    Merino Gómez, AlejandroAutoridad UBU Orcid
    García Álvarez, Diego
    Sainz Palmero, Gregorio I.
    Acebes, Luis Felipe
    Fuente, María Jesús
    Publicado en
    ISA Transactions. 2020, V. 100, p. 481-494
    Editorial
    Elsevier
    Fecha de publicación
    2020-05
    ISSN
    0019-0578
    DOI
    10.1016/j.isatra.2020.01.006
    Resumen
    Soft sensors driven by data are very common in industrial plants to perform indirect measurements of difficult to measure critical variables by using other variables that are relatively easier to obtain. The use of soft sensors implies some challenges, such as the colinearity of the predictor variables, the time-varying and possible non-linear nature of the industrial process. To deal with the first challenge, the partial least square (PLS) regression has been employed in many applications to model the linear relations between process variables, with noisy and highly correlated data. However, the PLS model needs to deal with the other two issues: the non-linear and time-varying characteristics of the processes. In this work, a new knowledge-based methodology for a recursive non-linear PLS algorithm (RNPLS) is systematized to deal with these issues. Here, the non-linear PLS algorithm is set up by carrying out the PLS regression over the augmented input matrix, which includes knowledge based non-linear transformations of some of the variables. This transformation depends on the system’s nature, and takes into account the available knowledge about the process, which is provided by expert knowledge or emulated using software tools. Then, the recursive exponential weighted PLS is used to modify and adapt the model according to the process changes. This RNPLS algorithm has been tested using two case studies according to the available knowledge, a real industrial evaporation station of the sugar industry, where the expert knowledge about the process permits the formulation of the relationships, and a simulated wastewater treatment plant, where the necessary knowledge about the process is obtained by a software tool. The results show that the methodology involving knowledge regarding the process is able to adjust the process changes, providing highly accurate predictions.
    Palabras clave
    Soft sensor
    Partial least squares
    Non-linear mapping
    Recursive estimation
    RNPLS
    Materia
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/8990
    Versión del editor
    https://doi.org/10.1016/j.isatra.2020.01.006
    Aparece en las colecciones
    • Artículos ARCO
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Merino-isat_2020.pdf
    Tamaño:
    1.936Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    21
    CITATIONS
    21 total citations on Dimensions.
    21 Total citations
    16 Recent citations
    5.62 Field Citation Ratio
    n/a Relative Citation Ratio
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem