Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/311187
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

On the Binding Mode and Molecular Mechanism of Enzymatic Polyethylene Terephthalate Degradation

AutorFalkenstein, Patricia; Zhao, Ziyue; Di Pede-Mattatelli, Ania CSIC ORCID; Künze, Georg; Sommer, Michael; Sonnendecker, Christian; Zimmermann, Wolfgang; Colizzi, Francesco CSIC ORCID; Matysik, Jörg; Song, Chen
Palabras claveBiocatalytic PET degradation
Plastic recycling
Polyester hydrolases
Trehalose glass
Solid-state NMR
Molecular dynamics
Enzyme-substrate interactions
Fecha de publicaciónmay-2023
EditorAmerican Chemical Society
CitaciónACS Catalysis 13(10): 6919-6933 (2023)
ResumenEnzymatic degradation of polyethylene terephthlate (PET) by polyester hydrolases is currently subject to intensive research, as it is considered as a potential eco-friendly recycling method for plastic waste. However, the substrate-binding mode and the molecular mechanism of enzymatic PET hydrolysis are still under intense investigation, and controversial hypotheses have been presented. To help unravel the inherent mechanism of biocatalytic PET degradation at the atomic level, we performed solid-state NMR measurements of a cutinase from Thermobifida fusca (TfCut2) embedded in trehalose glasses together with chemically synthesized, amorphous 13C(═O)-labeled oligomeric PET. The resulting ternary enzyme-PET-trehalose glassy system enabled advanced solid-state NMR methods for real-time tracking of the enzymatic PET degradation and the investigation of PET chain dynamics. Combined with enhanced-sampling molecular dynamics simulations, specific enzyme–substrate interactions during the degradation process could also be monitored. Our results demonstrate that the PET chain is first cleaved by TfCut2 in blocks of at least one repeat unit and further to terephthalic acid and ethylene glycol. Moreover, the second step (formation of final hydrolysis products) appears to be rate-limiting in such reactions. The observed dynamic changes and interfacial protein contacts of 13C-labeled PET carbonyl groups suggest that only one PET repeat unit is bound to the enzyme during the degradation process while the rest of the PET chain is only loosely confined to the active site. These results, not accessible by using conventional solution enzyme samples and small nonhydrolyzable substrates, provide a better understanding of the biocatalytic PET degradation mechanism of polyester hydrolases
Descripción15 pages, 8 figures, supporting information https://doi.org/10.1021/acscatal.3c00259
Versión del editorhttps://doi.org/10.1021/acscatal.3c00259
URIhttp://hdl.handle.net/10261/311187
DOI10.1021/acscatal.3c00259
E-ISSN2155-5435
Aparece en las colecciones: (ICM) Artículos




Ficheros en este ítem:
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

8
checked on 06-may-2024

WEB OF SCIENCETM
Citations

4
checked on 22-feb-2024

Page view(s)

48
checked on 07-may-2024

Download(s)

234
checked on 07-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.