Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/343609
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Nanoscale Operando Characterization of Electrolyte-Gated Organic Field-Effect Transistors Reveals Charge Transport Bottlenecks

AutorTanwar, Shubham; Millan Solsona, Ruben; Ruiz Molina, Sara; Mas Torrent, Marta CSIC ORCID; Kyndiah, Adrica; Gomila, Gabriel
Palabras claveConduction anisotropy
Conductivity maps
Electrolyte-gated organic field-effect transistors
Nanoscale
Operando
Operation regimes
Potential maps
Scanning dielectric microscopy
Fecha de publicación18-dic-2023
EditorWiley-VCH
CitaciónAdvanced Materials: 10.1002/adma.202309767 (2023)
ResumenCharge transport in electrolyte-gated organic field-effect transistors (EGOFETs) is governed by the microstructural property of the semiconducting thin film that is in direct contact with the electrolyte. Therefore, a comprehensive nanoscale operando characterization of the active channel is crucial to pinpoint various charge transport bottlenecks for rational and targeted optimization of the devices. Here, the local electrical properties of EGOFETs are systematically probed by in-liquid scanning dielectric microscopy (in-liquid SDM) and a direct picture of their functional mechanism at the nanoscale is provided across all operational regimes, starting from subthreshold, linear to saturation, until the onset of pinch-off. To this end, a robust interpretation framework of in-liquid SDM is introduced that enables quantitative local electric potential mapping directly from raw experimental data without requiring calibration or numerical simulations. Based on this development, a straightforward nanoscale assessment of various charge transport bottlenecks is performed, like contact access resistances, inter- and intradomain charge transport, microstructural inhomogeneities, and conduction anisotropy, which have been inaccessible earlier. Present results contribute to the fundamental understanding of charge transport in electrolyte-gated transistors and promote the development of direct structure-property-function relationships to guide future design rules.
Versión del editorhttp://doi.org/10.1002/adma.202309767
URIhttp://hdl.handle.net/10261/343609
DOI10.1002/adma.202309767
ISSN0935-9648
Aparece en las colecciones: (ICMAB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Tanwar_AdvMat_2023_editorial.pdfArtículo principal5,25 MBAdobe PDFVista previa
Visualizar/Abrir
Tanwar_AdvMat_2023_suppl_editorial.pdfInformación complementaria5,86 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

8
checked on 27-abr-2024

Download(s)

3
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons