Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/99894
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

How fast is excitation energy transfer in the photosystem II reaction center in the low temperature limit? Hole burning vs photon echo

AutorZazubovich, Valter; Jankowiak, Ryszard J.; Riley, Kerry J.; Picorel Castaño, Rafael CSIC ORCID ; Seibert, Michael; Small, Gerald J.
Palabras clavePhoton echo spectroscopy
Photosystem reaction center
Primary charge transfer separation
Excitation energy transfer
Relaxation processes
Photons
Phonons
Molecules
Excitons
Energy transfer
Chromophores
Chlorophyll
Charge transfer
Excitonic structure
Hole burning spectroscopy
Nonphotochemical hole burned spectra
Absorption spectroscopy
Fecha de publicación27-mar-2003
EditorAmerican Chemical Society
CitaciónJournal of Physical Chemistry B 107 (12): 2862-2866 (2003)
ResumenThe Qy(S1) excitonic structure, excitation energy transfer (EET), and primary charge-transfer separation processes of the isolated photosystem II reaction center (PS II RC) have proven to be formidable problems due, in part, to the severe spectral congestion of the So → Qy absorption spectrum. Recently, Prokhorenko and Holzwarth (J. Phys. Chem. B 2000, 104, 11563) reported interesting femtosecond 2-pulse photon echo data on the RC at 1.3 K for excitation wavelengths between 676 and 686 nm. At times longer than ∼1 ps and λ ≳ 678 nm, the echo decay curves are highly dispersive, which was attributed to a distribution of primary charge separation rates ranging from 2 ps to several hundred ps. A prompt subpicosecond component of the echo decay curves was also observed and suggested to be due to EET occurring in ∼100-200 fs. We present here persistent nonphotochemical hole burned spectra and transient triplet bottleneck hole spectra obtained with burn wavelengths between 680 and 686 nm, which show that the EET time in that wavelength region is no shorter than ∼5-10 ps. It is argued that the prompt component of the echo decay curves is due to relaxation of low-frequency phonons excited by the pump pulse. The argument is based on hole burning spectroscopy being the frequency domain equivalent of 2-photon echo spectroscopy, as well as on published photon echo data for chromophores in amorphous hosts.
Versión del editorhttp://dx.doi.org/10.1021/jp022231t
URIhttp://hdl.handle.net/10261/99894
DOI10.1021/jp022231t
Identificadoresdoi: 10.1021/jp022231t
issn: 1089-5647
Aparece en las colecciones: (EEAD) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

13
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

13
checked on 26-feb-2024

Page view(s)

325
checked on 10-may-2024

Download(s)

103
checked on 10-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.