Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10284/6167
Título: | Os modelos de exposição necessários à aquisição de publicidade no sector televisivo |
Autor: | Ventura, Cristina Rosalinda Mendes |
Orientador: | Meirinhos, Galvão dos Santos |
Palavras-chave: | Audiências Televisão Data Mining Previsão Análise Simbólica Planeamento de Media Audiences Television Forecasting Symbolic Analysis Media Planning Télévision Prévision Analyse Symbolique Planification de media |
Data de Defesa: | 2015 |
Editora: | [s.n.] |
Resumo: | O investimento publicitário no sector televisivo depende do desenvolvimento de
modelos de “ratings” ou da identificação de abordagens metodológicas alternativas de
previsão da exposição televisiva. Avaliámos o contributo da Análise Simbólica e do
Data Mining para a construção dos modelos quantitativos de exposição, que servem de
suporte à actividade de planeamento de media.
Nas bases de audimetria consta informação com uma considerável capacidade
explicativa da evolução dos ratings que pode alcançar os 90%. Porém, o potencial
predictivo das análises univariadas e multivariadas de Regressão linear e não linear é
consideravelmente menor, situando-se no máximo no intervalo 70%-80%. Foram
testadas determinadas metodologias de Redes Neuronais (MLP e RBF), Árvores de
Regressão (CART e CHAID), IBL, segmentação e clustering das séries temporais e
modelos locais de Regressão.
A construção de modelos explicativos dos comportamentos “estruturais” de consumo
televisivo, permitiu verificar que no painel existe uma reduzida a moderada duplicação
das audiências e que a totalidade dos comportamentos de lealdade está presente,
existindo alguma tendência para a especialização das audiências. O desenvolvimento de um modelo explicativo estrutural da exposição televisiva
demonstra os múltiplos contextos de exposição intencional e não intencional e
fundamenta uma proposta alternativa de construção dos modelos de exposição,
recorrendo a metodologias simbólicas, ao Data Mining Sequencial, Temporal,
Multirrelacional e a algoritmos Bayesianos e de Regressão não linear, que é aplicável
nos contextos de maior irregularidade dos dados de ratings ou quando novos conteúdos
são transmitidos.
Para os segmentos que apresentam uma exposição fortemente irregular é proposta a
construção de Regras de associação e sequenciais que vão permitir a identificação dos
suportes mais adequados à divulgação da mensagem publicitária, com a posterior
construção de Redes Bayesianas e de Regras de Classificação multirrelacionais para
reduzir a incerteza dos resultados em determinado período. Quando existem hábitos de
consumo televisivo poderá ser suficiente recorrer ao Data Mining Sequencial, a
modelos Binomiais Logísticos ou à Classificação de Bayes.
No contexto de transmissão de eventos desportivos devemos recorrer às Regras
Temporais que permitem identificar informação relevante nas séries temporais
multivariadas de “ratings”, viabilizando uma melhor negociação com as estações
televisivas. Television advertising investment depends on the development of ratings models or on the identification of alternative methodological approaches for the prediction of television exposure. In this research study, we evaluate the contribution of Symbolic Analysis and Data Mining for the construction of quantitative exposure models, which support the activity of media planning. According to the results attained, ratings databases contain information with a considerable explanatory capacity on the evolution of commercial ratings, which can reach up to 90%. However, the predictive potential of univariate and multivariate Linear Regression models and non-linear analysis is considerably lower and in general drops in the 70% -80% range. Certain methodologies were tested within the Neuronal Networks field (MLP and RBF), Regression Trees (CART and CHAID), IBL, segmentation and clustering of time series and Local Regression models. The construction of explanatory models for television “structural” consumption behaviours allowed us assessing that the panel presents reduced audience duplication ratings but all of the loyalty behaviours are present and there is a trend towards the specialisation of TV audiences. The development of a structural explanatory television exposure model demonstrates the multiple contexts of intentional and unintentional TV exposure and justifies an alternative proposal for the construction of exposure models, using symbolic methodologies, Temporal, Sequential and Multi-relational Data Mining and Bayesian algorithms and Non-Linear. Regression, which is most suited in the contexts of a higher irregularity of Ratings data or when new content is broadcasted. For audience segments which exhibit stronger irregular patterns, the construction of association or sequence rules is proposed. These rules will allow the identification of the most appropriate commercial spots for the broadcasting of the advertising message, with the subsequent construction of Bayesian Networks and Multi-Relational Regression Rules so as to reduce the uncertainty of the results over a given period. When viewers have television consumption habits, it may be sufficient to use Binomial Logistic models and Data Mining Sequential models or Bayes classification. In the context of the broadcast of sports events, there is a great difficulty in the construction of causal models. Therefore, we must turn to Temporal Rules in order to identify relevant information in the multivariate ratings time series, enabling a better negotiation with the TV stations. L’investissement au publicité au secteur de la télévision dépend du developpement des modèles de “ratings” ou de l’identification de plusieures approches alternatives de prévision de l’exposition à la télévision. On a évalué le contribut de l’Analyse Symbolique et du Data Mining à fin de créer des modèles quantitatifs d’exposition qui supportent l’activité de planification du media. Aux bases de l’audiométrie on trouve l’information avec une capacité explicatif considérable sur l’évolution des ratings qui peut atteindre un pourcentage de 90%. Cependant, le potentiel de pronostiquer les analyses univariées et multivariées da la Régression Linéaire et non Linéaire est considerablement inférieur et se situe dans un intervalle 70%-80% maximum. On a examiné certaines méthodologies des réseaux de neurones (MLP et RBF), arbres de régression (CART e CHAID), IBL, segmentation et clustering des séries chronologiques et des modèles locales de Régression. La création des modèles explicatifs des comportements “structurals” de consommation de télévision a montré qui au panneau existe une duplication des audiences faible à modérée et que tous les comportements de loyauté sont présents et qu’il ya une certaine tendance pour la spécialization des audiences. Le développement d’un modèle explicatif structural de l’exposition à la télévision montre les contextes variés de l’exposition intentionnel et non intentionnel et soutient une suggestion alternative de création des modèles de exposition, donnant la possibilité de utilization des méthodologies symboliques, le Data Mining Séquentiel, Temporel, Multirrelacional et algorithmes bayésiens et de Régression non linéaire, qui sont appliqués dans les contextes plus irrégulières des ratings ou quand les nouveaux contenus sont transmis. Pour les segments qui présentent une exposition beaucoup irréguliere on propose la création des règles de association et sequentielles qui permettront l’identification des supports plus convenables à la divulgation du message publicitaire, avec la création en arrière des règles bayésiens et des règles de classification multirrelationals à fin de réduire l’incertitude des résultats dans un période determiné. Quand on existe les habitudes de consommation de la télévision sera suffissant utilizer le Data Mining Sequentiel, les modèles Logistiques Binominales ou la classification de Bayes Au contexte de transmission des évenements sportifs on doit appliquer les Règles Temporelles qui identifient l’information plus important dans les séries chronologiques multivariées des “ratings”, et qui permet une meilleure négociation avec les chaînes de télévision. |
URI: | http://hdl.handle.net/10284/6167 |
Designação: | Doutoramento em Ciências da Informação, Ramo de Jornalismo e Estudos Mediáticos |
Aparece nas colecções: | FCHS (DCEC) - Teses de Doutoramento |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TD_33105.pdf | 11,53 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.