Enhanced Coordination in the PV–HESS Microgrids Cluster: Introducing a New Distributed Event Consensus Algorithm

Date
2024-01-06
Authors
Al-Tameemi, Zaid Hamid Abdulabbas
Lie, Tek Tjing
Zamora, Ramon
Blaabjerg, Frede
Supervisor
Item type
Journal Article
Degree name
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Abstract

To ensure reliable power delivery to customers under potential disturbances, the coordination of a microgrid cluster (MGC) is essential. Various control strategies—centralized, decentralized, distributed, and hierarchical—have been explored in the literature to achieve this goal. The hierarchical control method, with three distinct levels, has proven effective in fostering coordination among microgrids (MGs) within the cluster. The third control level, utilizing a time-triggering consensus protocol, relies on a continuous and reliable communication network for data exchange among MGs, leading to resource-intensive operations and potential data congestion. Moreover, uncertainties introduced by renewable energy sources (RESs) can adversely impact cluster performance. In response to these challenges, this paper introduces a new distributed event-triggered consensus algorithm (DETC) to enhance the efficiency in handling the aforementioned issues. The proposed algorithm significantly reduces communication burdens, addressing resource usage concerns. The performance of this approach is evaluated through simulations of a cluster comprising four DC MGs, in each of which were PV and a hybrid Battery-Super capacitor in the MATLAB environment. The key findings indicate that the proposed DETC algorithm achieves commendable results in terms of voltage regulation, precise power sharing among sources, and a reduction in triggering instants. Based on these results, this method can be deemed as a good development in MGC management, providing a more efficient and reliable means of coordination, particularly in scenarios with dynamic loads and renewable energy integration. It is also a viable option for current microgrid systems, due to its ability to decrease communication loads while retaining excellent performance.

Description
Keywords
40 Engineering , 4008 Electrical Engineering , 4009 Electronics, Sensors and Digital Hardware , 7 Affordable and Clean Energy , 13 Climate Action , 02 Physical Sciences , 09 Engineering , 33 Built environment and design , 40 Engineering , 51 Physical sciences
Source
Energies, ISSN: 1996-1073 (Print); 1996-1073 (Online), MDPI AG, 17(2), 293-293. doi: 10.3390/en17020293
Rights statement
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).