Publicación: Quantization on the Torus and modular invariance
Archivos
Fecha
1999-01-21
Directores
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Resumen
The implementation of modular invariance on the torus as a phase space at the quantum level is discussed in a group-theoretical framework. Unlike the classical case, at the quantum level some restrictions on the parameters of the theory should be imposed to ensure modular invariance. Two cases must be considered, depending on the cohomology class of the symplectic form on the torus. If it
is of integer cohomology class n, then full modular invariance is achieved at the
quantum level only for those wave functions on the torus which are periodic if n is
even, or antiperiodic if n is odd. If the symplectic form is of rational cohomology
class n/r , a similar result holds –the wave functions must be either periodic or
antiperiodic on a torus r times larger in both direccions, depending on the parity
of nr. Application of these results to the Abelian Chern-Simons is discussed.
Descripción
Palabras clave
Cuantización, Torus, Teoría de Abelian Chern-Simons, Cohomología
Cita bibliográfica
GUERRERO GARCÍA, Julio, CALIXTO MOLINA, Manuel, ALDAYA VALVERDE, Victor. Quantization on the Torus and modular invariance. En: International Colloquium on Group Theoretical Methods in Physics (21º : 1996: Goslar). Goslar: 1999, 24p.