Publicación:
Quantization on the Torus and modular invariance

Miniatura

Fecha

1999-01-21

Directores

Título de la revista

ISSN de la revista

Título del volumen

Editorial

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

The implementation of modular invariance on the torus as a phase space at the quantum level is discussed in a group-theoretical framework. Unlike the classical case, at the quantum level some restrictions on the parameters of the theory should be imposed to ensure modular invariance. Two cases must be considered, depending on the cohomology class of the symplectic form on the torus. If it is of integer cohomology class n, then full modular invariance is achieved at the quantum level only for those wave functions on the torus which are periodic if n is even, or antiperiodic if n is odd. If the symplectic form is of rational cohomology class n/r , a similar result holds –the wave functions must be either periodic or antiperiodic on a torus r times larger in both direccions, depending on the parity of nr. Application of these results to the Abelian Chern-Simons is discussed.

Descripción

Palabras clave

Cuantización, Torus, Teoría de Abelian Chern-Simons, Cohomología

Cita bibliográfica

GUERRERO GARCÍA, Julio, CALIXTO MOLINA, Manuel, ALDAYA VALVERDE, Victor. Quantization on the Torus and modular invariance. En: International Colloquium on Group Theoretical Methods in Physics (21º : 1996: Goslar). Goslar: 1999, 24p.