Repository logo
 

Smac-based antagonists of the inhibitors of apoptosis

Loading...
Thumbnail Image

Date

2006

Journal Title

Journal ISSN

Volume Title

Publisher

University of Ottawa (Canada)

Abstract

Apoptosis signal pathways converge on the Caspases, a family of proteases that form a self-amplifying cascade, the activation of which generates the characteristic morphological and biochemical features of apoptotic cell death. The Inhibitors of Apoptosis (IAPs) are a family of proteins that bind and inactivate Caspases at both the initiation and terminal effector stages of this cascade. Over-expression of IAPs, as observed in cancer cell lines and tumour biopsy samples, results in a cellular phenotype of resistance to a variety of apoptotic stresses including chemotherapeutic drugs and irradiation. One negative regulator of IAP function, Smac (second mitochondrial activator of Caspases a.k.a.Diablo) has been identified as a mitochondrial protein that is processed and released concomitantly with cytochrome c following an apoptotic stress. Proteolytic processing of the mitochondrial signal peptide sequence generates a novel amino terminus that interacts with XIAP and disrupts XIAP-meditated Caspase-9 inhibition. By disrupting the interaction of XIAP with Caspase-9, Smac is believed to promote apoptotis. Furthermore, the structure determinations of XIAP, in conjunction with either Caspases or Smac, have led to the identification of a critical pocket and groove on the surface of each BIR domain ( Baculovirus IAP Repeat). Within XIAP BIR3, the binding pocket interacts with Caspase-9 and can be disrupted by the presence of Smac, which competes for the same site. In this thesis work, the utility of Smac as a chemo-sensitizing agent for the treatment of cancer was enhanced by three different strategies. The first approach involved the development and characterization of an ubiquitin-Smac fusion system that circumvents the targeting of Smac to the mitochondria and results in the expression of a fully mature, biologically active Smac protein. The second approach entailed developing a strategy for increasing the affinity of Smac binding to the IAPs. A random peptide phage display screen was used to identify novel, high affinity peptide ligands that bind to the IAP-BIR3 motifs. These peptide sequences were similar in structure to the amino terminus of Smac and Caspase-9. The data generated from these two approaches showed that both over-expressed, mature Smac and Smac-like peptide sequences bind to the IAPs in vitro and in vivo and sensitize cells to chemotherapeutic drugs. The third and final approach involved developing a Smac system that was a more potent apoptosis-inducer than wild-type Smac, which would be predicted to have greater therapeutic potential. It has been shown that Smac interactions with the IAP BIR domains may accelerate IAP auto-ubiquitination and destruction via the IAP carboxy terminal RING (Really Interesting New Gene) domain. Adding an IAP-RING domain to the carboxy terminus of Smac was predicted to enhance IAP degradation while maintaining the IAPs in a non-functional protein complex. Indeed, it was observed that generating a Smac protein with RING-conferred E3 ligase activity significantly decreased IAP levels, with a concomitant increase in the sensitivity to apoptosis in the presence of chemotherapeutic agents.

Description

Keywords

Citation

Source: Dissertation Abstracts International, Volume: 67-10, Section: B, page: 5645.