Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/17745
Título: Reversal of doxorubicin-Induced bone loss and mineralization by supplementation of Resveratrol and MitoTEMPO in the early development of Sparus aurata
Autor: Poudel, Sunil
Izquierdo, Marisol
Cancela, M. Leonor
Gavaia, Paulo
Palavras-chave: Oxidative stress
Resveratrol
MitoTEMPO
Doxorubicin
Bone deformities
Mineralization
Data: 9-Mar-2022
Editora: MDPI
Citação: Nutrients 14 (6): 1154 (2022)
Resumo: Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on <i>Sparus aurata</i> larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including <i>catalase</i>, <i>glutathione peroxidase 1</i>, <i>superoxide dismutase 1</i>, and <i>hsp90</i> suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Peer review: yes
URI: http://hdl.handle.net/10400.1/17745
DOI: 10.3390/nu14061154
ISSN: 2072-6643
Aparece nas colecções:CCM2-Artigos (em revistas ou actas indexadas)
FCB2-Artigos (em revistas ou actas indexadas)
ABC2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
nutrients-14-01154.pdf3,46 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.