Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.6/11696
Título: Design of a Variable Camber Flap for Air Cargo Challenge Aircraft
Autor: Soares, Ricardo Manuel Vitorino
Orientador: Gamboa, Pedro Vieira
Palavras-chave: Casca de Asa Flexível
Dispositivo Flap
Perfil Asa Limpo
Data de Defesa: 10-Dez-2020
Resumo: The need for a more competitive Air cargo challenge (ACC) aircraft led the pursuit for a more aerodynamic efficient wing. This work details the various steps taken in the design of a gapless flap system with the actuation mechanism inside for a clean surface. Multiple flexible joint specimens designs were manufactured and tested with the help of a special constructed test bench to assert the required torque to bend certain degrees. The goal is to serve as a flexible skin in the flap hinge line. A system that rotates around an axis on the lower wing skin means that the upper skin changes in length, arising the need for a flexible material. A RTV silicone rubber was chosen to close the upper surface flap gap. A novel test apparatus was devised to determine the silicone Young’s Modulus and Poisson’s ratio so the sheet could be sized. An adhesion test was also performed using a suitable bonding agent to verify if it had the capability of performing the task at hand. The full range of hinge acting moments was determined. Aerodynamic hinge moment was simulated with XFOIL software, while the elastomer’s was calculated with the found properties and trigonometry. Due to the elastomeric nature of silicone, air pressure effects were evaluated using XFOIL Cp curves to calculate resulting loads and a subsequent FEM analyse with Ansys Mechanical module predicted the outer plane deformations. A program in Matlab was written to help dimension the actuation system. Optimization was achieved by comparing the servo motor available hinge torque with the resisting moments sum (aerodynamic, elastomer and flexible skin joint). With all the described methodology, a final design was purposed based on the central wing panel of ACC 2019 edition model. To not only validate the concept at hand but also the employed methodology, a small (250 mm span) section was manufactured using conventional 2 parts hollow moulded manufacturing process. For the novel concept, a silicone sheet bonding procedure was planned and required a special mould for the effect. After de­moulded, the section was trimmed and the servo motor was installed to check the concept functionality. A final experiment using a modified bench test was realized to compare the projected hinge moments with the built section one’s.
A necessidade de uma aeronave mais competitiva para as edições do Air Cargo Challenge levou à procura de uma asa mais eficiente aerodinamicamente. Esta dissertação descreve os varios passos que levaram ao desenho de um flap sem fenda, com o mecanismo de atuação imbutido, para garantir uma superficie limpa. Multiplos espécimes com junta flexível foram produzidos e testados com recurso a uma bancada de testes construída para o efeito, de forma a calcular­se o binário necessário para determinada deflexão. As juntas têm o objetivo de servirem como cascas flexíveis na dobradiça do flap. Um dispositivo que revolve em torno de um eixo localizado no intradorso faz com que a casca do extradorso altere em comprimento, surgindo a necessidade de um material elástico. Um silicone RTV foi escolhido para fechar a fenda do flap. Um novo método experimetal foi pensado para determinar o módulo de Young e o coeficiente de Poisson de forma a dimensionar a folha de silicone. Um teste foi realizado para aferir a capacidade de adesão de um agente selante. A totalidade dos momentos que actuam sobre a dobradiça foram calculados. O momento aerodinâmico foi determinado com o recurso ao programa XFOIL, enquanto o do elastômero foi calculado com base nas suas propriedades e em trigonometria. Devido há natureza elastica do silicone, os efeitos resultantes da pressão do ar foram avaliados recurrendo às curvas de CP do XFOIL para calcular as cargas resultantes. Posteriormente uma análise MEF com o software comercial Ansys previu as deformações perpendiculares ao plano. Para dimensionar o sistema de actuação, um program foi escrito no Matlab. Optimização foi conseguida através da comparação do binário que o servo motor enacte na dobradiça com o somatório dos momentos resistentes (aerodinâmico, elastômero e junta flexível). Com toda a metodologia acima descrita, um desenho final, baseado no painel central da asa do modelo do ACC2019, foi apresentado. De forma a validar o conceito apresentado e os métodos utilizados, uma pequena secção (250 mm envergadura) foi fabricada com recurso a processos de manufactura de partes moldadas. Para o novo conceito, um processo de adesão para a folha de silicone foi pensado e este requeriu um molde próprio para o efeito. Depois de desmoldada, a secção foi trimada e o servo motor foi instalado para verificar a funcionalidade. Um último teste foi efectuado, realizando modificações à bancada de teste construída previamente, com a finalidade de comparar os momentos projectados com os do produto final.
URI: http://hdl.handle.net/10400.6/11696
Designação: Mestrado Integrado em Engenharia Aeronáutica
Aparece nas colecções:FE - DCA | Dissertações de Mestrado e Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
8009_17281.pdf4,48 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.