A Hybrid Excited Switched Reluctance Motor for Torque Enhancement Without Permanent Magnet Behavior in Electric Vehicle Applications

Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Publication Type:
Conference Proceeding
Citation:
2022 IEEE 10th Power India International Conference, PIICON 2022, 2022, 00, pp. 1-5
Issue Date:
2022-01-01
Full metadata record
Switched reluctance motors (SRMs) have become more prevalent in electric traction motor applications owing to their high speeds, multiple phase overlap, and optimal control operation of machine parameters, maximizing torque per ampere and power density. As an alternative to DC series motors and permanent magnets, the development of specialized electrical machines like SRMs has exploded in recent years. One of the most recent developments in electric vehicle (EV) applications is the use of hybrid excitation switching reluctance motors (HESRM), which can provide more torque and power density at variable speeds. HESRM topology, on the other hand, developed numerous excitation techniques to combine rare earth permanent magnets (PM) components to create greater flux in the active area. Thus, the HESEM technique with PM results in unfavorable difficulties when trying to hide the traditional SRMs' individuality. In order to improve the torque performance of HESRM without using PMs, this research seeks to develop and analyze a novel topology for SRM traction motors. Furthermore, Ansys/2D Maxwell's finite element approach is used for the new HESRM's numerical analysis of static and dynamic behavior (FEM). The experiments verify the proof of concept and the software analysis method. According to the results, unlike traditional SRMs, the new motor is well-suited for EVs because of its high dependability, controllability, and redundancy, as well as its ability to provide a significant amount of torque at a wide range of speeds.
Please use this identifier to cite or link to this item: