• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    MEdge-Chain: Leveraging Edge Computing and Blockchain for Efficient Medical Data Exchange

    No Thumbnail [120x130]
    Date
    2021
    Author
    Abdellatif A.A.
    Samara L.
    Mohamed A.
    Erbad A.
    Chiasserini C.F.
    Guizani M.
    O'Connor M.D.
    Laughton J.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Medical data exchange between diverse e-health entities can lead to a better healthcare quality, improving the response time in emergency conditions, and a more accurate control of critical medical events (e.g., national health threats or epidemics). However, exchanging large amount of information between different e-health entities is challenging in terms of security, privacy, and network loads, especially for large-scale healthcare systems. Indeed, recent solutions suffer from poor scalability, computational cost, and slow response. Thus, this article proposes medical-edge-blockchain (MEdge-Chain), a holistic framework that exploits the integration of edge computing and blockchain-based technologies to process large amounts of medical data. Specifically, the proposed framework describes a healthcare system that aims to aggregate diverse health entities in a unique national healthcare system by enabling swift, secure exchange, and storage of medical data. Moreover, we design an automated patients monitoring scheme, at the edge, which enables the remote monitoring and efficient discovery of critical medical events. Then, we integrate this scheme with a blockchain architecture to optimize medical data exchanging between diverse entities. Furthermore, we develop a blockchain-based optimization model that aims to optimize the latency and computational cost of medical data exchange between different health entities, hence providing effective and secure healthcare services. Finally, we show the effectiveness of our system in adapting to different critical events, while highlighting the benefits of the proposed intelligent health system. 2014 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3052910
    http://hdl.handle.net/10576/30053
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail