• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection

    No Thumbnail [120x130]
    Date
    2021-01-01
    Author
    Balaji, Aswin
    Tripathi, Utkarsh
    Chamola, Vinay
    Benslimane, Abderrahim
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Technological interventions are becoming commonplace in everyday vehicles. But utilization of biosignals that can enhance the overall driving experience is still limited. Microsleep is one such issue that needs intervention, owing to the difficulty in its detection and social acceptance of using wearable BCI devices during transit. Microsleep is a short duration of sleep that lasts from few to several seconds. It could occur unconsciously without the person in context realizing it. This, therefore, happens before the deep sleep and could also occur when performing critical tasks such as driving on a highway. By using modern-day advancements in Internet of Things (IoT) and Machine Learning, we can provide efficient solutions to prevent accidents due to microsleep during vehicular transit. However, it is noteworthy that distinguishing microsleep using a single channel system is a challenge. We have explored this using datasets provided by International BCI Competition Committee. Given the fact that the participants' values might not match the exact scenario, approaches for exploiting transitory phases using ANN/CNN have been developed and discussed in this paper. Transitory phases could include Wakefulness ↔ Non-Rapid Eye Movement-1 phase (NREM-1). Results show ≈95% increase in mean statistical agreements, which are represented by kappa values (CNN NREM1 → CNN Transition) and ≈77% increase in mean kappa (ANN NREM1 → ANN Transition). Hence, this work gives an initial indication whether classifiers trained on night sleep data can be used for microsleep detection in more real-world scenarios.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119427236&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2021.3125126
    http://hdl.handle.net/10576/36244
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail