• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrocatalytic arsenite oxidation in bicarbonate solutions combined with CO2 reduction to formate

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020-01-07
    Author
    Wonjung, Choi
    Kim, Minju
    Kim, Byeong-ju
    Park, Yiseul
    Han, Dong Suk
    Hoffmann, Michael R.
    Park, Hyunwoong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sunlight-driven water-energy nexus technologies are receiving increasing attention. This study presents a hybrid electrochemical system that catalyzes the oxidation of As(III) to As(V) with a nanoparticulate TiO2 electrocatalyst (Ti/Ir1-xTaxOy/TiO2; denoted as an n-TEC) while simultaneously converting CO2 to formate on a Bi electrode in aqueous bicarbonate solutions at circum-neutral pH. Linear sweep voltammograms of n-TEC exhibit a specific As(III) oxidation peak (Ep,As), at which the Faradaic efficiency (FE) of As(V) production is ∼100 %. However, the application of a potential higher than the peak (E > Ep,As) leads to a significant decrease in the FE due to water oxidation. Upon the addition of chloride, the oxidation of water and chloride occur competitively, producing reactive chlorine species responsible for mediating the oxidation of As(III). The Bi electrodes synthesized via the electrodeposition of Bi3+ typically show high FEs of >80 % for formate production in bicarbonate solution purged with CO2. The addition of chloride significantly enhances the current while maintaining the FE. The n-TEC catalyst and Bi electrodes are paired in a single device equipped with a membrane, and significant effort is made to achieve the same FEs in both the anodic and cathodic reactions as in their half-reactions. Finally, the optimized n-TEC/Bi pair is coupled with a low-cost, commercially available photovoltaic (PV). Various technical factors that drive the overall reactions with the PV are considered, and maximum FEs of ∼95 % are achieved for the production of both As(V) and formate.
    URI
    https://www.sciencedirect.com/science/article/pii/S0926337320300229
    DOI/handle
    http://dx.doi.org/10.1016/j.apcatb.2020.118607
    http://hdl.handle.net/10576/37394
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail