On the Effectiveness of Dimensionality Reduction for Unsupervised Structural Health Monitoring Anomaly Detection

TR Number

Date

2022-04-19

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Dimensionality reduction techniques (DR) enhance data interpretability and reduce space complexity, though at the cost of information loss. Such methods have been prevalent in the Structural Health Monitoring (SHM) anomaly detection literature. While DR is favorable in supervised anomaly detection, where possible novelties are known a priori, the efficacy is less clear in unsupervised detection. In this work, we perform a detailed assessment of the DR performance trade-offs to determine whether the information loss imposed by DR can impact SHM performance for previously unseen novelties. As a basis for our analysis, we rely on an SHM anomaly detection method operating on input signals' fast Fourier transform (FFT). FFT is regarded as a raw, frequency-domain feature that allows studying various DR techniques. We design extensive experiments comparing various DR techniques, including neural autoencoder models, to capture the impact on two SHM benchmark datasets exclusively. Results imply the loss of information to be more detrimental, reducing the novelty detection accuracy by up to 60% with autoencoder-based DR. Regularization can alleviate some of the challenges though unpredictable. Dimensions of substantial vibrational information mostly survive DR; thus, the regularization impact suggests that these dimensions are not reliable damage-sensitive features regarding unseen faults. Consequently, we argue that designing new SHM anomaly detection methods that can work with high-dimensional raw features is a necessary research direction and present open challenges and future directions.

Description

Keywords

Unsupervised SHM, Generative Adversarial Networks, Anomaly Detection, Dimensionality Reduction, Autoencoder, Regularization

Citation

Collections