Multi-scale Finite Element Modeling of Rubber Friction Toward Prediction of Hydroplaning Potential

TR Number

Date

2021-03-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Hydroplaning is a phenomenon that occurs when a layer of water between the tire and pavement pushes the tire upward. The tire detaches from the pavement, preventing it from providing sufficient forces and moments for the vehicle to respond to driver control inputs such as breaking, accelerating and steering. This work is mainly focused on the tire and its interaction with the pavement to address hydroplaning. Before using a full-scale tire model, interactions of the tread block with a specific surface is studied. To do so, several mechanical tests such as uniaxial, biaxial, planar (shear), and DMA are conducted to predict the hyper-viscoelastic properties of the rubber. Using multi-scale modeling techniques, the friction coefficient between the tire and pavement, for wet conditions, is characterized via developing 2D and 3D model representing the rubber tread interacting with the rough surface. Using a tire model that is validated based on results found in the literature as well as in-house experimental data, fluid-structure interaction (FSI) between the tire-water-road surfaces are investigated through two approaches. In the first approach, the coupled Eulerian-Lagrangian (CEL) formulation was used. The drawback associated with the CEL method is the laminar assumption that the behavior of the fluid at length scales smaller than the smallest element size is not captured. To improve the simulation results, in the second approach, an FSI model incorporating finite-element methods and the Navier-Stokes equations for a two-phase flow of water and air, and the shear stress transport k-ω turbulence model, was developed and validated, improving the prediction of real hydroplaning scenarios. The improved FSI model was applied to hydroplaning speed and cornering force scenarios. In addition, tire contact patch length was calculated using the developed FSI model and was compared to the results obtained from the intelligent tire.

Description

Keywords

Fluid-Structure Interaction, Finite Element Modeling, CFD, Tire Hydroplaning

Citation