Toward a General Novelty Detection Framework in Structural Health Monitoring; Challenges and Opportunities in Deep Learning

TR Number

Date

2022-10-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Structural health monitoring (SHM) is an anomaly detection process. Data-driven SHM has gained much attention compared to the model-based strategy, specifically with the current state-of-the-art machine learning routines. Model-based methods require structural information, time-consuming model updating, and may fail with noisy data, a persistent condition in real-time SHM problems. However, there are several hindrances in supervised and unsupervised settings in machine learning-based SHM. This study identifies and addresses such hindrances with the versatility of state-of-the-art deep learning strategies. While managing those complications, we aim at proposing a general, structure-independent (ie requires no prior information) SHM framework. Developing such techniques plays a crucial role in the SHM of smart cities. In the supervised SHM and sensor output validation (SOV) category, data class imbalance results from the lack of data from nuanced structural states. Employing Long Short-Term Memory (LSTM) units, we developed a general technique that manages both SHM and SOV. The developed architecture accepts high-dimensional features, enabling the train of Generative Adversarial Networks for data generation, addressing the complications of data imbalance. GAN-generated SHM data improved accuracy for low-sampled classes from 44.77% to 64.58% and from 73.39% to 90.84% in two SOV and SHM case studies, respectively. Arguing the unsupervised SHM as a practical category since it identifies novelties (ie unseen states), the current application of dimensionality reduction (DR) in unsupervised SHM is investigated. Due to the curse of dimensionality, classical unsupervised techniques cannot function with high-dimensional features, driving the use of DR techniques. Investigations highlighted the importance of avoiding DR in unsupervised SHM, as data dimensions that DR suppresses may contain damage-sensitive features for novelties. With DR, novelty detection accuracy declined up to 60% in two benchmark SHM datasets. Other obstacles in the unsupervised SHM area are case-dependent features, lack of dynamic-class novelty detection, and the impact of user-defined detection parameters on novelty detection accuracy. We chose the fast Fourier transform-based (FFT) of raw signals with no dimensionality reduction to develop the SHM framework. A deep neural network scheme is developed to perform the pattern recognition of that high-dimensional data. The framework does not require prior information, with GAN models implemented, offering robustness to sensor placement in structures. These characteristics make the framework suitable for developing general unsupervised SHM techniques.

Description

Keywords

Structural health monitoring, Reliability Analysis, Dimensionality reduction, Generative Adversarial Networks, Sensor output validation

Citation