Exploring the Interaction of Forest Management and Climate in the Community Land Model

TR Number

Date

2023-01-11

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

Forests perform many important ecological functions and provide numerous environmental services to humanity. Currently forests are under ever increasing pressures from humans through deforestation, changes in land use, and anthropogenic climate change. Managed forests play an important role in supplying forest products to the global population, necessitating the need to predict how forests will respond to climate change and how this will influence future wood product supplies. In this dissertation I used loblolly pine (Pinus taeda), the most extensively cultivated tree species in the United States, as a study system to simulate how climate change and forest management could alter the dynamics of managed forests in the future. Using the land component (the Community Land Model) of the widely used Community Earth System Model (CESM), I developed and validated a set of tools necessary to simulate the loblolly pine plantation system using the vegetation demography model embedded in CESM (FATES). This included developing a representation of loblolly pine using data from the literature, which was better able to capture forest growth and development observed in field studies than FATES's existing conifer tree representation. I added the ability to simulate several aspects of forest management not previously supported in FATES by creating the Vegetation Management Module, which I showed was able to realistically reproduce the common management practice of stand thinning. I used these new tools to perform simulations of how loblolly pine will grow across the Southeastern United States until the end of the 21st century, under the high and low climate change scenarios developed by the scientific community in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our experiments show that loblolly pine productivity may as much as double by the end of the century, with total wood harvest over that period increasing by almost half. I also showed that different management activities had significant effects on loblolly plantation yields, with mid-rotation stand thinning having an effect under both climate scenarios on par with increases due to the extreme climate change scenario SSP5 RCP8.5. I showed that these changes in wood yields could decrease the forest area in the Southeast required to meet the wood product demands over the rest of the century. These changes in plantation productivity could interact with socioeconomic factors to drive changes in land use and carbon storage in the Southeastern U.S. This work increases our understanding of how managed forests in the U.S.\ will be affected by climate change and how our management choices modulate that response. The techniques and tools developed here open up new areas of research into the role of forest management in the climate system.

Description

Keywords

forests, climate change, forest management, earth system modeling, climate mitigation, CESM, CLM, FATES, Vegetation Management Module

Citation