Supervised Inference of Gene Regulatory Networks

Files

TR Number

Date

2021-09-09

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

A gene regulatory network (GRN) records the interactions among transcription factors and their target genes. GRNs are useful to study how transcription factors (TFs) control gene expression as cells transition between states during differentiation and development. Scientists usually construct GRNs by careful examination and study of the literature. This process is slow and painstaking and does not scale to large networks. In this thesis, we study the problem of inferring GRNs automatically from gene expression data. Recent data-driven approaches to infer GRNs increasingly rely on single-cell level RNA-sequencing (scRNA-seq) data. Most of these methods rely on unsupervised or association based strategies, which cannot leverage known regulatory interactions by design. To facilitate supervised learning, we propose a novel graph convolutional neural network (GCN) based autoencoder to infer new regulatory edges from a known GRN and scRNA-seq data. As the name suggests, a GCN-based autoencoder consists of an encoder that learns a low-dimensional embedding of the nodes (genes) in the input graph (the GRN) through a series of graph convolution operations and a decoder that aims to reconstruct the original graph as accurately as possible. We investigate several GCN-based architectures to determine the ideal encoder-decoder combination for GRN reconstruction. We systematically study the performance of these and other supervised learning methods on different mouse and human scRNA-seq datasets for two types of evaluation. We demonstrate that our GCN-based approach substantially outperforms traditional machine learning approaches.

Description

Keywords

Gene Regulatory Networks, Network Inference, Link Prediction, Graph Convolutional Networks, Graph Machine Learning

Citation

Collections