A Generalized Analysis of Multiple-Clad Fibers with Arbitrary Step-Indx Profiles and Applications

Files
etd.pdf (566.16 KB)
Downloads: 1053
TR Number
Date
1997-04-22
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

A generalized analysis of multiple-clad cylindrical dielectric structures with step-index profiles is presented. This analysis yields unified expressions for fields, dispersion equation and cutoff conditions for weakly guiding optical fibers with step-index but otherwise arbitrary profiles. The formulation focuses on triple-clad fibers, but can accommodate single and double-clad fibers as special limiting cases.

Using the generalized solutions, transmission properties of several types of specialty fibers for broadband applications, including dispersion-shifted, dispersion-flattened, and dispersion compensating fibers, are studied. Improved designs for dispersion-shifted and dispersion compensating fibers are achieved.

Fiber parameters and material compositions for the improved designs are provided. The proposed design for the dispersion-shifted fiber yields zero second-order as well as third-order dispersion at the 1.55 micrometer wavelength. The dispersion compensating fiber proposed here provides a large negative dispersion of about -400 ps/nm.km at the 1.55 micrometer wavelength for the fundamental mode. Numerical results for dispersion characteristics, cutoff wavelengths, and radial field distributions are provided.

Description
Keywords
multiple-clad fibers, dispersion-altered fibers
Citation
Collections