Signal Enhancement Techniques for Rf Squid Based Magnetic Imaging Systems
Loading...
Files
Date
2006-08
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We have investigated the rf SQUID (radio-frequency superconducting quantum interference device) and its coupling to tank circuit configurations to achieve an optimal front-end assembly for sensitive and high spatial resolution magnetic imaging systems. The investigation of the YBCO rf SQUID coupling to the conventional LC tank circuits revealed that coupling from the back of the SQUID substrate enhances the SQUID signal while facilitating the front-end assembly configuration. The optimal thickness of the substrate material between the SQUID and the tank circuit is 0.4 mm for LaAlO3 resulting in an increase of the SQUID flux-voltage transfer function signal, Vspp, of 1.5 times, and 0.5 mm for SrTiO3 with an increase of V spp of 1.62 times compared to that for direct face to face couplings. For rf coupling with a coplanar resonator, it has been found that the best configuration, in which a resonator is sandwiched between the SQUID substrate and the resonator substrate, provides a Vspp about 3.4 times higher than that for the worse case where the resonator and the SQUID are coupled back to back. The use of a resonator leads to a limitation of the achievable spatial resolution due to its flux focusing characteristics. This resulted in a favouring of the use of the conventional tank circuits when considering the desired high spatial resolution. The effect of the YBCO flip chip magnetic shielding of the SQUIDs in the back-coupling with the LC tank circuit configuration has also been investigated, with a view to reducing the SQUID effective area to increase the spatial resolution and also for studying the effect of the coupling of various kinds of transformers to the SQUIDs. It is revealed that there is no very considerable change in the flux-voltage transfer function signal level with respect to the effective shield area, while the lowest working temperature of the SQUIDs was slightly shifted higher by a couple of degrees, depending on the shield area.
Description
Keywords
SQUID, Back coupling, Circuit configuration, Voltage transfer functions, Coplanar resonators
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Akram, R., Fardmanesh, M., Schubert, J., Zander, W., Banzet, M., Lomparski, D., Schmidt, M., and Krause, H. J. (2006). Signal enhancement techniques for rf SQUID based magnetic imaging systems, Superconductor Science and Technology, 19(8), 821-824. doi:10.1088/0953-2048/19/8/023
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
2
Source
Superconductor Science and Technology
Volume
19
Issue
8
Start Page
821
End Page
824
SCOPUS™ Citations
2
checked on Sep 17, 2025
Web of Science™ Citations
3
checked on Sep 17, 2025
Page Views
308
checked on Sep 17, 2025
Downloads
253
checked on Sep 17, 2025
Google Scholar™
