Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach

Bachli, M. Belen; Sedeño, LucasIcon ; Ochab, Jeremi K.; Piguet, Olivier; Kumfor, Fiona; Reyes, Pablo; Torralva, Teresa; Roca, MaríaIcon ; Cardona, Juan Felipe; Gonzalez Campo, CeciliaIcon ; Herrera, Eduar; Slachevsky, Andrea; Matallana, Diana; Manes, Facundo FranciscoIcon ; García, Adolfo MartínIcon ; Ibañez, Agustin MarianoIcon ; Chialvo, Dante RenatoIcon
Fecha de publicación: 03/2020
Editorial: Academic Press Inc Elsevier Science
Revista: Journal Neuroimag
ISSN: 1053-8119
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current clinical practice. Promisingly, current tools can be complemented by computational decision-support methods to objectively analyze multidimensional measures and increase diagnostic confidence. Yet, widespread application of these tools cannot be recommended unless they are proven to perform consistently and reproducibly across samples from different countries. We implemented machine-learning algorithms to evaluate the prediction power of neurocognitive biomarkers (behavioral and imaging measures) for classifying two neurodegenerative conditions –Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)– across three different countries (>200 participants). We use machine-learning tools integrating multimodal measures such as cognitive scores (executive functions and cognitive screening) and brain atrophy volume (voxel based morphometry from fronto-temporo-insular regions in bvFTD, and temporo-parietal regions in AD) to identify the most relevant features in predicting the incidence of the diseases. In the Country-1 cohort, predictions of AD and bvFTD became maximally improved upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal training data from this cohort allowed predicting both AD and bvFTD in the other two novel datasets from other countries with high accuracy (>90%), demonstrating the robustness of the approach as well as the differential specificity and reliability of behavioral and neural markers for each condition. In sum, this is the first study, across centers and countries, to validate the predictive power of cognitive signatures combined with atrophy levels for contrastive neurodegenerative conditions, validating a benchmark for future assessments of reliability and reproducibility.
Palabras clave: ALZHEIMER'S DISEASE , CLASSIFICATION , EXECUTIVE FUNCTIONS , FRONTOTEMPORAL DEMENTIA , MACHINE-LEARNING , VOXEL-BASED MORPHOMETRY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.854Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/152110
URL: https://www.sciencedirect.com/science/article/pii/S105381191931047X?via%3Dihub
DOI: http://dx.doi.org/10.1016/j.neuroimage.2019.116456
Colecciones
Articulos(INCYT)
Articulos de INSTITUTO DE NEUROCIENCIAS COGNITIVAS Y TRASLACIONAL
Citación
Bachli, M. Belen; Sedeño, Lucas; Ochab, Jeremi K.; Piguet, Olivier; Kumfor, Fiona; et al.; Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach; Academic Press Inc Elsevier Science; Journal Neuroimag; 208; 3-2020; 1-13
Compartir
Altmétricas
Article has an altmetric score of 26

See more details

Picked up by 1 news outlets
Posted by 29 X users
On 2 Facebook pages
194 readers on Mendeley

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES