Logotipo do repositório
 

Publicação:
A tutorial review on entropy-based handcrafted feature extraction for information fusion

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Entropy (H) is the main subject of this article, concisely written to serve as a tutorial introducing two feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C++ source-codes and enriched with example applications on restricted-vocabulary speech recognition and image synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the outcome of a partially pre-tuned deep neural network architecture which fuses important information, bringing a cutting-edge point-of-view for both DSP and PR communities.

Descrição

Palavras-chave

Deep networks, Entropy, Handcrafted feature extraction, Image synthesis, Information fusion, Restricted-vocabulary speech recognition

Idioma

Inglês

Como citar

Information Fusion, v. 41, p. 161-175.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação