Repository logo
 

Publication:
Solution of two-body bound state problems with confining potentials

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bb̄), ψ(cc̄)), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results. © 2010 American Institute of Physics.

Description

Keywords

confining potential, Lippmann-Schwinger integral equation, two-body problem

Language

English

Citation

AIP Conference Proceedings, v. 1296, p. 334-337.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs