Logo
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Ελληνικά 
    • English
    • Ελληνικά
    • Deutsch
    • français
    • italiano
    • español
  • Σύνδεση
Προβολή τεκμηρίου 
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
  •   Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
  • Επιστημονικές Δημοσιεύσεις Μελών ΠΘ (ΕΔΠΘ)
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ.
  • Προβολή τεκμηρίου
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Όλο το DSpace
  • Κοινότητες & Συλλογές
  • Ανά ημερομηνία δημοσίευσης
  • Συγγραφείς
  • Τίτλοι
  • Λέξεις κλειδιά

Applications of singular-value decomposition (SVD)

No Thumbnail [100%x150]
Συγγραφέας
Akritas, A. G.; Malaschonok, G. I.
Ημερομηνία
2004
DOI
10.1016/j.matcom.2004.05.005
Λέξη-κλειδί
applications
singular-value decompositions
hanger
stretcher
aligner
Computer Science, Interdisciplinary Applications
Computer Science,
Software Engineering
Mathematics, Applied
Εμφάνιση Μεταδεδομένων
Επιτομή
Let A be an m x n matrix with m greater than or equal to n. Then one form of the singular-value decomposition of A is A = U-T SigmaV, where U and V are orthogonal and Sigma is square diagonal. That is, UUT = I-rank(A), VVT = I-rank(A), U is rank(A) x m, V is rank(A) x n and [GRAPHICS] is a rank (A) x rank(A) diagonal matrix. In addition sigma(1) greater than or equal to sigma(2) greater than or equal to... greater than or equal to sigma(rank)(A) > 0. The sigma(i)'s are called the singular values of A and their number is equal to the rank of A. The ratio sigma(1) /sigma(rank)(A) can be regarded as a condition number of the matrix A. It is easily verified that the singular-value decomposition can be also written as [GRAPHICS] The matrix u(i)(T) v(i) is the outerproduct of the i-th row of U with the corresponding row of V. Note that each of these matrices can be stored using only m + n locations rather than mn locations.
URI
http://hdl.handle.net/11615/25412
Collections
  • Δημοσιεύσεις σε περιοδικά, συνέδρια, κεφάλαια βιβλίων κλπ. [19705]
htmlmap 

 

Πλοήγηση

Όλο το DSpaceΚοινότητες & ΣυλλογέςΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιάΑυτή η συλλογήΑνά ημερομηνία δημοσίευσηςΣυγγραφείςΤίτλοιΛέξεις κλειδιά

Ο λογαριασμός μου

ΣύνδεσηΕγγραφή (MyDSpace)
Πληροφορίες-Επικοινωνία
ΑπόθεσηΣχετικά μεΒοήθειαΕπικοινωνήστε μαζί μας
Επιλογή ΓλώσσαςΌλο το DSpace
EnglishΕλληνικά
htmlmap 

 

NoThumbnail