Comparison of Three Adiposity Indexes and Cutoff Values to Predict Metabolic Syndrome Among University Students
Cargando...
Fecha
2017-04
Director
Enlace al recurso
ORCID
https://orcid.org/0000-0002-0646-2316
https://orcid.org/0000-0001-7518-0761
https://orcid.org/0000-0001-8169-1664
https://orcid.org/0000-0002-6334-7082
https://orcid.org/0000-0001-8991-5079
https://orcid.org/0000-0001-5493-8182
https://orcid.org/0000-0003-2734-7912
https://orcid.org/0000-0003-2746-8298
https://orcid.org/0000-0002-2815-2060
https://orcid.org/0000-0002-1397-7182
https://orcid.org/0000-0003-3075-6960
https://orcid.org/0000-0001-7518-0761
https://orcid.org/0000-0001-8169-1664
https://orcid.org/0000-0002-6334-7082
https://orcid.org/0000-0001-8991-5079
https://orcid.org/0000-0001-5493-8182
https://orcid.org/0000-0003-2734-7912
https://orcid.org/0000-0003-2746-8298
https://orcid.org/0000-0002-2815-2060
https://orcid.org/0000-0002-1397-7182
https://orcid.org/0000-0003-3075-6960
Google Scholar
https://scholar.google.com/citations?hl=es&user=LYXpVoEAAAAJ
https://scholar.google.com/citations?hl=es&user=mmkjGaUAAAAJ
https://scholar.google.com/citations?hl=es&user=n7Q2xhUAAAAJ
https://scholar.google.com/citations?hl=es&user=Jh1ddQEAAAAJ
https://scholar.google.com/citations?hl=es&user=lsgwbMAAAAAJ
https://scholar.google.com/citations?hl=es&user=hF48bb4AAAAJ
https://scholar.google.com/citations?hl=es&user=GRcWj_YAAAAJ
https://scholar.google.com/citations?hl=es&user=DjLPCogAAAAJ
https://scholar.google.com/citations?hl=es&user=7UeeIB4AAAAJ
https://scholar.google.com/citations?hl=es&user=mmkjGaUAAAAJ
https://scholar.google.com/citations?hl=es&user=n7Q2xhUAAAAJ
https://scholar.google.com/citations?hl=es&user=Jh1ddQEAAAAJ
https://scholar.google.com/citations?hl=es&user=lsgwbMAAAAAJ
https://scholar.google.com/citations?hl=es&user=hF48bb4AAAAJ
https://scholar.google.com/citations?hl=es&user=GRcWj_YAAAAJ
https://scholar.google.com/citations?hl=es&user=DjLPCogAAAAJ
https://scholar.google.com/citations?hl=es&user=7UeeIB4AAAAJ
Cvlac
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000161250
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000014321
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000011060
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001358309
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434416
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001552830
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001490725
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001340225
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001491981
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000825719
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000014321
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000011060
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001358309
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434416
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001552830
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001490725
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001340225
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001491981
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000825719
gruplac
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000001026
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000001120
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007568
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000013975
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000001120
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000007568
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000013975
Descripción Dominio:
Título de la revista
ISSN de la revista
Título del volumen
Editor
Compartir
Documentos PDF
Cargando...
Resumen
Abstract
Purpose: Obesity and high body fat are related to diabetes and metabolic syndrome (MetS) in all ethnic groups. Based on the International Diabetes Federation (IDF) definition of MetS, the aim of the present study was to compare body adiposity indexes (BAIs) and to assess their various cutoff values for the prediction of MetS in university students from Colombia.
Methods: A cross-sectional study was conducted on 886 volunteers (51.9% woman; age mean 21.4 years).
Anthropometric characteristics (height, weight, waist circumference [WC], and hip circumference [HC]) were measured, and body composition was assessed by bioelectrical impedance analysis. MetS was defined as including ‡3 of the metabolic abnormalities (WC, high-density lipoprotein cholesterol [HDL-C], triglycerides, fasting glucose, and systolic and diastolic blood pressure [BP]) in the definition provided by the IDF. The BAIs (i.e., BAI-HC [BAI], BAI-WC [BAI-w], and [BAI-p]) were calculated from formulas taking into account, height, weight, and WC, and for the visceral adiposity indexes, a formula, including WC, HDL-C, and triglycerides, was used.
Results: The overall prevalence of MetS was 5.9%, higher in men than in women. The most prevalent com-
ponents were low HDL-C, high triglyceride levels, WC, and BP levels. The receiver operating characteristic
curves analysis showed that BAI, BAI-w, and BAI-p could be useful tools to predict MetS in this population.
Conclusion: For women, the optimal MetS threshold was found to be 30.34 (area under curve [AUC] = 0.720–0.863), 19.10 (AUC = 0.799–0.925), and 29.68 (AUC= 0.779–0.901), for BAI, BAI-w, and BAI-p, respectively. For men, the optimal MetS threshold was found to be 27.83 (AUC= 0.726–0.873), 21.48 (AUC = 0.755–0.906), and 26.18 (AUC= 0.766–0.894), for BAI, BAI-w, and BAI-p, respectively. The three indexes can be useful tools to predict MetS according to the IDF criteria in university students from Colombia. Data on larger samples are needed.
Idioma
Palabras clave
Citación
Correa-Bautista, J. E., González-Ruíz, K., Vivas, A., Triana-Reina, H. R., Martínez-Torres, J., Prieto-Benavides, D. H., Carrillo, H. A., Ramos-Sepúlveda, J. A., Afanador-Rodríguez, M. I., Villa-González, E., García-Hermoso, A., & Ramírez-Vélez, R. (2017). Comparison of Three Adiposity Indexes and Cutoff Values to Predict Metabolic Syndrome Among University Students. Metabolic syndrome and related disorders, 15(7), 363–370. https://doi.org/10.1089/met.2017.0016
Colecciones
Licencia Creative Commons
Atribución-NoComercial-SinDerivadas 2.5 Colombia