Coulomb drag effect in parallel cylindrical quantum wires

Date
1996
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Solid State Communications
Print ISSN
0038-1098
Electronic ISSN
Publisher
Pergamon Press
Volume
99
Issue
1
Pages
1 - 5
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We study the Coulomb drag rate for electrons in two parallel quantum wires. The double-quantum wire structure is modeled for a GaAs material with cylindrical wires having infinite potential barriers. The momentum transfer rate between the wires (Coulomb drag effect) is calculated as a function of temperature for several wire separation distances. We employ the full wave vector and frequency dependent random-phase approximation (RPA) at finite temperature to describe the effective interwire Coulomb interaction. We find that the drag rate at high temperatures (i.e., T ≥ EF/2) is dominated by the collective modes (plasmons) of the system similar to the case in double-well structures. Including the local-field effects in an approximate way we estimate the importance of intrawire correlations to be significant. Copyright © 1996 Published by Elsevier Science Ltd.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)