Asymptotically optimal contextual bandit algorithm using hierarchical structures

Date
2018
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
IEEE Transactions on Neural Networks and Learning Systems
Print ISSN
2162-237X
Electronic ISSN
2162-2388
Publisher
Institute of Electrical and Electronics Engineers
Volume
30
Issue
3
Pages
923 - 937
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We propose an online algorithm for sequential learning in the contextual multiarmed bandit setting. Our approach is to partition the context space and, then, optimally combine all of the possible mappings between the partition regions and the set of bandit arms in a data-driven manner. We show that in our approach, the best mapping is able to approximate the best arm selection policy to any desired degree under mild Lipschitz conditions. Therefore, we design our algorithm based on the optimal adaptive combination and asymptotically achieve the performance of the best mapping as well as the best arm selection policy. This optimality is also guaranteed to hold even in adversarial environments since we do not rely on any statistical assumptions regarding the contexts or the loss of the bandit arms. Moreover, we design an efficient implementation for our algorithm using various hierarchical partitioning structures, such as lexicographical or arbitrary position splitting and binary trees (BTs) (and several other partitioning examples). For instance, in the case of BT partitioning, the computational complexity is only log-linear in the number of regions in the finest partition. In conclusion, we provide significant performance improvements by introducing upper bounds (with respect to the best arm selection policy) that are mathematically proven to vanish in the average loss per round sense at a faster rate compared to the state of the art. Our experimental work extensively covers various scenarios ranging from bandit settings to multiclass classification with real and synthetic data. In these experiments, we show that our algorithm is highly superior to the state-of-the-art techniques while maintaining the introduced mathematical guarantees and a computationally decent scalability. IEEE

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)