Optical torque from enhanced scattering by multipolar plasmonic resonance
Author(s)
Lee, Yoonkyung E.; Jin, Dafei; Hung Fung, Kin; Fang, Nicholas Xuanlai
DownloadFang_Optical torque.pdf (954.8Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field and thereby produce scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamaterials.
Date issued
2014-08Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Nanophotonics
Publisher
Walter de Gruyter
Citation
Lee, Yoonkyung E., Kin Hung Fung, Dafei Jin, and Nicholas X. Fang. “Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance.” Nanophotonics 3, no. 6 (January 1, 2014).
Version: Original manuscript
ISSN
2192-8614
2192-8606