Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Speeding up dynamic compilation: concurrent and parallel dynamic compilation

View/Open
Bohm2013.pdf (3.003Mb)
Date
02/07/2013
Author
Bohm, Igor
Metadata
Show full item record
Abstract
The main challenge faced by a dynamic compilation system is to detect and translate frequently executed program regions into highly efficient native code as fast as possible. To efficiently reduce dynamic compilation latency, a dynamic compilation system must improve its workload throughput, i.e. compile more application hotspots per time. As time for dynamic compilation adds to the overall execution time, the dynamic compiler is often decoupled and operates in a separate thread independent from the main execution loop to reduce the overhead of dynamic compilation. This thesis proposes innovative techniques aimed at effectively speeding up dynamic compilation. The first contribution is a generalised region recording scheme optimised for program representations that require dynamic code discovery (e.g. binary program representations). The second contribution reduces dynamic compilation cost by incrementally compiling several hot regions in a concurrent and parallel task farm. Altogether the combination of generalised light-weight code discovery, large translation units, dynamic work scheduling, and concurrent and parallel dynamic compilation ensures timely and efficient processing of compilation workloads. Compared to state-of-the-art dynamic compilation approaches, speedups of up to 2.08 are demonstrated for industry standard benchmarks such as BioPerf, Spec Cpu 2006, and Eembc. Next, innovative applications of the proposed dynamic compilation scheme to speed up architectural and micro-architectural performance modelling are demonstrated. The main contribution in this context is to exploit runtime information to dynamically generate optimised code that accurately models architectural and micro-architectural components. Consequently, compilation units are larger and more complex resulting in increased compilation latencies. Large and complex compilation units present an ideal use case for our concurrent and parallel dynamic compilation infrastructure. We demonstrate that our novel micro-architectural performance modelling is faster than state-of-the-art Fpga-based simulation, whilst providing the same level of accuracy.
URI
http://hdl.handle.net/1842/6694
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page