Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/37937
Type: Tese
Title: Novos candidatos a protótipos de fármacos e metalofármacos antimicrobianos e antineoplásicos biorredutíveis à base de hidrazonas e tiossemicarbazonas funcionalizadas com nitroimidazol e nitrobenzeno
Other Titles: New antimicrobial and antineoplastic bioreductive drug and metallodrug candidate prototypes bearing nitroimidazole and nitrobenzene-functionalized hydrazones and thiosemicarbazones
Authors: Ana Paula Araujo de Oliveira
First Advisor: Heloisa de Oliveira Beraldo
First Referee: Lídia Moreira Lima
Second Referee: Júlio Santos Rebouças
Third Referee: Rossimiriam Pereira Freitas
metadata.dc.contributor.referee4: Cynthia Peres Demicheli
Abstract: Foram obtidas 2-acetilpiridina-4-nitroimidazolhidrazona (HL1), 2-acetilpiridina-2-nitroimidazolhidrazona (HL2) e 2-benzoilpiridina-4-nitroimidazolhidrazona (HL3). Os compostos foram inativos contra células de macrófagos J774.A1. HL1 e HL3 exibiram atividade contra Leishmania chagasi, enquanto HL2 mostrou-se inativo, sugerindo que a presença do grupo 4-nitro provavelmente favorece a ação antiparasitária. 2-formil-8-hidroxiquinolina-4-nitroimidazolhidrazona (H2L4) e 2-formil-8-hidroxiquinolina-4-nitrobenzenohidrazona (H2L5) e seus complexos [Sb(HL)Cl2] (1-2), e [Bi(HL)Cl2] (3-4) foram sintetizados. Enquanto H2L5 foi inativo, H2L4 e os complexos (1-4) inibiram formas tripomastigotas de Trypanosoma cruzi. Todos os complexos apresentaram atividade similar ou superior à do benznidazol, sendo que 2 (CE50 = 0,33 µM) e (4, CE50 = 0,06 µM) apresentaram as atividades mais altas contra tripomastigotas. 2 (CE50 = 3,05 µM) e 4 (CE50 = 2,31 µM) também exibiram as atividades mais altas contra amastigotas. A atividade citotóxica dos compostos foi investigada em células não infectadas de fibroblastos humanos hFIB e de macrófagos de camundongos. Em todos os casos, os complexos de Bi(III) mostraram os maiores índices de seletividade contra tripomastigotas. A investigação do modo de ação do complexo (4) em tripomastigotas sugeriu a ocorrência de morte celular por necrose. Foram também sintetizados (1-(2-metil-5-nitroimidazol)propan-2-ilideno)hidrazonacarboxamida (HL6), (1-(2-metil-5-nitroimidazol)propan-2-ilideno)acetilhidrazona (HL7) e (1-(2-metil-5-nitroimidazol)propan-2-ilideno)benzoilhidrazona (HL8) (1-(2-metil-5-nitroimidazol)propan-2-ilideno)hidrazinocarbotioamida (HL9), (N-metil-1-(2-metil-5-nitroimidazol)propan-2-ilideno)hidrazinocarbotioamida (HL10) e (1-(2-metil-5-nitroimidazol)propan-2-ilideno)-N-fenil-hidrazinocarbotioamida (HL11) e [Cu(HL6)2Cl2] (5), [Cu(HL7)Cl2] (6), [Cu(HL8)2Cl2] (7), [Cu(HL9)Cl2]·½H2O (8), [Cu(HL10)Cl2] (9), [Cu(HL11)Cl2] (10), [Ag(HL)NO3] HL = HL7-HL10 (11-14) , e [Bi(HL)Cl3] HL = HL 9-HL11(15-17). Todos os compostos revelaram-se inativos contra diferentes cepas de bactérias aeróbicas. Os ligantes exibiram atividade antibacteriana in vitro contra bactérias anaeróbicas Gram-positivas Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis e Fusubacterium nucleatum. Para os complexos de Cu(II), Ag(I) e Bi(III), a atividade antibacteriana aumentou significativamente em vários casos mostrando assim, a alta seletividade dos compostos para bactérias anaeróbicas. Estudos eletroquímicos da redução do grupo nitro produzindo o ânion radical NO_2^(∙-) revelaram que os compostos apresentam potenciais de redução comparáveis aos dos fármacos biorredutíveis secnidazol e benznidazol, indicando que suas atividades antimicrobianas podem estar relacionadas à biorredução intracelular do grupo nitro. Os complexos de Ag(I) também apresentaram atividade contra Candida albicans, Candida dubliniensis, Candida lusitaniae e Candida glabrata, enquanto os ligantes e os complexos de cobre(I) e bismuto(III) foram inativos, sugerindo que seus efeitos antifúngicos provavelmente se devem à presença de prata(I). Os complexos (11-17) foram ainda avaliados quanto à ação citotóxica frente a células de leucemia humana HL60 e de tumores sólidos HCT-116 (tumor colorretal), PC3 (tumor de próstata), SNB-19 (glioblastoma) e células saudáveis HEK-203 (células de rim embrionário humano). O complexo (13) apresentou atividade citotóxica contra todas as linhagens celulares testadas, enquanto os demais compostos foram inativos. Esses resultados sugerem que os compostos deveriam ser testados no futuro contra células de tumores sólidos em ambiente de hipóxia. Os complexos [Au(HL)P(CH2CH3)3]PF6 HL = HL9-HL11 (18-20) foram obtidos e testados quanto às suas atividades citotóxicas contra células de carcinoma colorretal HCT-116 sob condições de normóxia e hipóxia, e contra células saudáveis de rim embrionário humano HEK-293 em condições de normóxia. HL9-HL11 foram inativos contra células HCT-116 sob hipóxia. HL9 e HL10 provaram ser citotóxicos contra as linhagens celulares em condições de normóxia, enquanto HL11 foi inativo. Os complexos (18-20) e o precursor trietilfosfinaouro(I) apresentaram atividades contra células HCT-116 em normóxia e em hipóxia. Porém, exceto HL11, os compostos também revelaram ser ativos contra as células saudáveis HEK-293. O complexo (19) mostrou-se mais ativo contra células HCT-116 sob hipóxia do que sob normóxia e foi mais ativo contra as células HCT-116 sob condições de hipóxia que contra células HEK-293, com índice de seletividade (IS = IC50 HEK-293/ IC50HCT-116 hipoxia) igual a 3,7, semelhante ao valor obtido para o fármaco biorredutível tirapazamina (TPZ, IS = 4). Embora os compostos apresentem atividades citotóxicas distintas, os comportamentos eletroquímicos de HL9 – HL11 foram muito semelhantes quanto ao potencial de redução do grupo nitro, assim como os comportamentos eletroquímicos dos complexos (18-20).
Abstract: 2-acetylpyridine-4-nitroimidazolhydrazone (HL1), 2-acetylpyridine-2-nitroimidazolhydrazone (HL2) and 2-benzoylpyridine-4-nitroimidazolhydrazone (HL3) were obtained. The compounds did not show cytotoxic effects against J774.A1 macrophage cells. Only HL1 and HL3 exhibited antileishmanial activity against Leishmania chagasi, while HL2 proved to be inactive, indicating that the presence of the 4-nitro group probably favors the antiparasitic effects. 2-formyl-8-hydroxyquinoline-4-nitroimidazolhydrazone (H2L4), 2-formyl-8-hydroxyquinoline-4-nitrobenzenohydrazone (H2L5), [Sb(HL4)Cl2] (1), [Sb(HL5)Cl2] (2), [Bi(HL4)Cl2] (3) and [Bi(HL5)Cl2] (4) were synthesized. While H2L5 was inactive, H2L4 and complexes (1-4) inhibited the growth of trypomastigotes of Trypanosoma cruzi. All complexes showed activities similar or superior to that of benznidazole used as control. Complexes (2), CE50 = 0.33 µM) and (4) CE50 = 0.06 µM) proved to be the most active against trypomastigotes and as expected, (2) and (4) were also the most effective against the amastigote form, with de EC50 = 3.05 µM (2) and EC50 = 2.31 µM (4). The cytotoxic activities of the compounds were also evaluated against non-infected human hFIB fibroblasts cells and against mouse macrophage cells. In both cases the Bi(III) complexes showed the highest selectivity indexes against trypomastigotes. Investigations on the mode of action of complex (4) on trypomastigotes suggested the occurrence of cell death by necrosis (1-(2-methyl-5-nitroimidazole)propan-2-ylidene)hydrazonecarboxamide (HL6), (1-(2-methyl-5-nitroimidazole)propan-2-ylidene)acetylhydrazone (HL7), (1-(2-methyl-5-nitroimidazole)propan-2-ylidene)benzoylhydrazone (HL8), (1-(2-methyl-5-nitroimidazole)propan-2-ylidene)hydrazinocarbothioamide (HL9), (N-methyl-1-(2-methyl-5-nitroimidazole)propan-2-ylidene)hydrazinocarbothioamide (HL10) and (1-(2-methyl-5-nitroimidazole)propan-2-ylidene)-N-phenyl-hydrazinocarbothioamide (HL11) were obtained as well as [Cu(HL6)2Cl2] (5), [Cu(HL7)Cl2]·½CH3OH (6), [Cu(HL8)2Cl2] (7), [Cu(HL9)Cl2]·½H2O (8), [Cu(HL10)Cl2] (9), [Cu(HL11)Cl2]·½H2O (10), [Ag(HL7)NO3] (11), [Ag(HL8)NO3] (12), [Ag(HL9)NO3] (13), [Ag(HL10)NO3] (14), [Bi(HL9)Cl3] (15), [Bi(HL10)Cl3] (16) and [Bi(HL11)Cl3]·2H2O (17). All compounds revealed to be inactive against several strains of aerobic bacteria. In contrast, the secnidazole-derived ligands showed in vitro antibacterial activity against Gram-positive Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum anaerobic bactéria. Upon coordination to Cu(II), Ag(I) and Bi(III), the animicrobial activity significantly increased in several cases suggesting selectivity of the compounds for anaerobic strains. Electrochemical studies on the nitro group reduction generating the nitro anion radical NO_2^(∙-) showed that the compounds have reduction potentials similar to the bio-reducible drugs secnidazole and benznidazole, suggesting that their antibacterial effects might be related to the intracellular reduction of the nitro group. While the secnidazole-derived ligands and the Cu(II) and Bi(III) complexes were devoid of activity, the silver(I) complexes and silver nitrate exhibited antifungal action against Candida albicans, Candida dubliniensis, Candida lusitaniae and Candida glabrata, indicating that the antifungal effects are due to the presence of silver. Complexes (11-17) were evaluated for their antiproliferative activities against HL60 leukemia and HCT-116 (colorectal cancer), PC3 (prostate cance), SNB-19 (glioblastoma) and non-malignant HEK-203 (human embryonic kidney) cells. Complex (13) showed cytotoxic activity against all cell lineages while all other compounds were inactive. The results suggest that further studies on the cytotoxc effects of the compounds on solid tumor cells should be investigated under hypxia conditions. [Au(HL9)P(CH2CH3)3]PF6 (18), [Au(HL10)P(CH2CH3)3]PF6 (19) and [Au(HL11)P(CH2CH3)3]PF6 (20) were obtained and evaluated for their cytotoxicity against HCT-116 colorectal cancer cells under normoxia and hypoxia conditions, as well as against non-malignant HEK-293 human embryonic kidney cell under normoxia. HL9 and HL10 proved to be cytotoxic to both cell lineages under normoxia while HL11 was inactive. Complexes (18-20) and the thriethylphosphinegold(I) precursor showed cytotoxic activity against HCT-116 cells under normoxia and hypoxia conditions as well as against the HEK-293 healthy cells. Complex (19) deserves special interest since it was more active against HCT-116 cells under hypoxia than under normoxia conditions and was more potent against HCT-116 cells under hypoxia that against HEK-293 cells in normoxia, with selectivity index (SI = IC50 HEK-293/ IC50HCT-116 hipoxia) = 3.7, similar to the value obtained for the bioreducible control drug tirapazamine (TPZ, SI = 4). Regarding the reduction of the nitro group, although the compounds presented distinct cytotoxic effects, the electrochemical behaviors of HL9 – HL11 were very similar, as were the electrochemical behaviors of complexes (18-20).
Subject: Química inorgânica
Complexos metálicos
Antimicrobianos
Agentes antineoplásicos
Antiparasitários
Química farmacêutica
Atividade antifúngica
language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ICX - DEPARTAMENTO DE QUÍMICA
metadata.dc.publisher.program: Programa de Pós-Graduação em Química
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/37937
Issue Date: 4-Mar-2020
Appears in Collections:Teses de Doutorado

Files in This Item:
File Description SizeFormat 
Tese Ana Paula Araujo de Oliveira.pdf14.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.