Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid-Liquid Interactions

Authors

Wong, William
Tricoli, Antonio

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

Despite the rapid advent of superomniphobic materials, there is a lack of methodologies to accurately investigate the ultralow-energy interactions taking place on these interfaces. For instance, universally employed models such as the pendant droplet often fail to provide representative information on the wetting properties of superomniphobic surfaces. The delicate balance between the forces acting at the droplet–surface and droplet–needle interfaces can easily result in heavily distorted droplet profiles. Here, we introduce a Cassie-levitating droplet model which overcomes the limitations of the pendant droplet model, allowing a distortion-free assessment of the interactions between super(amphi)omniphobic materials and low surface tension liquids. Comparative analysis in wetting of low surface tension fluids such as hexadecane (∼27.47 mN/m) on superamphiphobic surfaces via the Cassie-levitating and pendant droplet models reveals up to 70° (800%) deviations in the estimated contact angle hysteresis. A theoretical framework is developed to assess experimentally observed profile distortions against ideal gravity-induced sagging of droplet shapes during dynamic droplet expansion and contraction cycles. Notably, pendant droplets resulted in up to 50% distortion while the Cassie-levitating ones achieved less than just 10%. We believe that the Cassie-levitating droplet model bears ample potential for the characterization of the rapidly emerging family of superomniphobic materials, setting the basis for their future engineering in numerous emerging applications.

Description

Citation

Source

ACS Applied Materials and Interfaces

Book Title

Entity type

Access Statement

Open Access

License Rights

Restricted until

Downloads

Back to topicon-arrow-up-solid
 
APRU
IARU
 
edX
Group of Eight Member

Acknowledgement of Country

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.


Contact ANUCopyrightDisclaimerPrivacyFreedom of Information

+61 2 6125 5111 The Australian National University, Canberra

TEQSA Provider ID: PRV12002 (Australian University) CRICOS Provider Code: 00120C ABN: 52 234 063 906