Accès à distance ? S'identifier sur le proxy UCLouvain
Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model
Primary tabs

Soil salinity can cause salt plant stress by reducing plant transpiration and yield due to very low osmotic potentials in the soil. For predicting this reduction, we present a simulation study to (i) identify a suitable functional form of the transpiration reduction function and (ii) to explain the different shapes of empirically observed reduction functions. Methods We used high resolution simulations with a model that couples 3D water flow and salt transport in the soil towards individual roots with flow in the root system. Results The simulations demonstrated that the local total water potential at the soil-root interface, i.e. the sum of the matric and osmotic potentials, is for a given root system, uniquely and piecewise linearly related to the transpiration rate. Using bulk total water potentials, i.e. spatially and temporally averaged potentials in the soil around roots, sigmoid relations were obtained. Unlike for the local potentials, the sigmoid relations were non-unique functions of the total bulk potential but depended on the contribution of the bulk osmotic potential. Conclusions To a large extent, Transpiration reduction is controlled by water potentials at the soil-root interface. Since spatial gradients in water potentials around roots are different for osmotic and matric potentials, depending on the root density and on soil hydraulic properties, transpiration reduction functions in terms of bulk water potentials cannot be transferred to other conditions, i.e. soil type, salt content, root density, beyond the conditions for which they were derived. Such a transfer could be achieved by downscaling to the soilroot interface using simulations with a high resolution process model.
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès restreint |
Publication date | 2014 |
Language | Anglais |
Journal information | "Plant and Soil : international journal on plant-soil relationships" - Vol. 377, p. 277-293 |
Peer reviewed | yes |
Publisher | Springer Netherlands ((Netherlands) Dordrecht) |
issn | 0032-079X |
e-issn | 1573-5036 |
Publication status | Publié |
Affiliation | UCL - SST/ELI/ELIE - Environmental Sciences |
Keywords | Eco-hydrology ; Soil-root modelling ; Root water uptake ; 3668 |
Links |
- Bechtold M., Vanderborght J., Ippisch O., Vereecken H., Efficient random walk particle tracking algorithm for advective-dispersive transport in media with discontinuous dispersion coefficients and water contents : EFFICIENT RANDOM WALK PARTICLE TRACKING ALGORITHM, 10.1029/2010wr010267
- Bhantana Parashuram, Lazarovitch Naftali, Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress, 10.1016/j.agwat.2009.12.016
- Cardon G. E., Letey J., Plant Water Uptake Terms Evaluated for Soil Water and Solute Movement Models, 10.2136/sssaj1992.03615995005600060038x
- Couvreur V., Vanderborght J., Javaux M., A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, 10.5194/hess-16-2957-2012
- de Jong van Lier Q., van Dam J. C., Metselaar K., de Jong R., Duijnisveld W. H. M., Macroscopic Root Water Uptake Distribution Using a Matric Flux Potential Approach, 10.2136/vzj2007.0083
- De Wit C (1958) Transpiration and crop yields. Versl Landbouwk Onderz 64. 6. Universtity Wageningen.
- DOUSSAN C, Modelling of the Hydraulic Architecture of Root Systems: An Integrated Approach to Water Absorption—Model Description, 10.1006/anbo.1997.0540
- Doussan Claude, Pierret Alain, Garrigues Emmanuelle, Pagès Loïc, Water Uptake by Plant Roots: II – Modelling of Water Transfer in the Soil Root-system with Explicit Account of Flow within the Root System – Comparison with Experiments, 10.1007/s11104-004-7904-z
- Dirksen C., Kool J. B., Koorevaar P., van Genuchten M. Th., HYSWASOR — Simulation Model of Hysteretic Water and Solute Transport in the Root Zone, Water Flow and Solute Transport in Soils (1993) ISBN:9783642779497 p.99-122, 10.1007/978-3-642-77947-3_8
- Dudley L. M., Shani U., Modeling Plant Response to Drought and Salt Stress, 10.2136/vzj2003.7510
- Feddes R, Raats P (2004) Parameterizing the soil-water-plant root system. In: Feddes R, de Rooij G, van Dam J (eds) Unsaturated-zone modeling: progress, challenges and applications. UR Frontis Series, Wageningen, pp 95–141
- Feddes Reinder A., Kowalik Piotr, Kolinska-Malinka Krystina, Zaradny Henryk, Simulation of field water uptake by plants using a soil water dependent root extraction function, 10.1016/0022-1694(76)90017-2
- Feddes R, Kowalik P, Zaradny H (1978) Simulation of field water use and crop yield. 188
- GARDNER W. R., DYNAMIC ASPECTS OF WATER AVAILABILITY TO PLANTS : , 10.1097/00010694-196002000-00001
- Groenveld T, Ben-Gal A, Yermiyahu U, Lazarovitch N (2013) Weather determined relative sensitivity of plants to salinity: quantification and simulation. Vadose Zone J. doi: 10.2136/vzj2012.0180
- Hainsworth J. M., Aylmore L. A. G., Water Extraction by Single Plant Roots1, 10.2136/sssaj1986.03615995005000040003x
- Hamza M. A., Aylmore L. A. G., Soil solute concentration and water uptake by single lupin and radish plant roots : I. Water extraction and solute accumulation, 10.1007/bf00010347
- Homaee M., Dirksen C., Feddes R.A., Simulation of root water uptake, 10.1016/s0378-3774(02)00072-0
- Homaee M., Feddes R. A., Dirksen C., A Macroscopic Water Extraction Model for Nonuniform Transient Salinity and Water Stress, 10.2136/sssaj2002.1764
- Homaee M, Feddes R.A, Dirksen C, Simulation of root water uptake, 10.1016/s0378-3774(02)00073-2
- Hopmans J, Bristow K (2002) Current capabilities and future needs of root water and nutrient uptake modeling. Adv Agron 77:104–175
- Jarvis N. J., Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences, 10.5194/hess-15-3431-2011
- Javaux Mathieu, Schröder Tom, Vanderborght Jan, Vereecken Harry, Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, 10.2136/vzj2007.0115
- Knipfer Thorsten, Fricke Wieland, Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare), 10.1111/j.1469-8137.2010.03240.x
- Kroes J, van Dam J, Groenendijk P, Hendriks R, Jacobs C (2008) SWAP version 3.2. In: Theory description and user manual. Wageningen, The Netherlands, p 262
- Maas E, Hoffman G (1977) Crop salt tolerance-current assessment. J Irrig Drain Div 103:115–134
- Metselaar Klaas, de Jong van Lier Quirijn, The Shape of the Transpiration Reduction Function under Plant Water Stress, 10.2136/vzj2006.0086
- NASSAR I. N., HORTON R., 10.1023/a:1006583918576
- Nimah M. N., Hanks R. J., Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity1, 10.2136/sssaj1973.03615995003700040018x
- Pagès Loïc, Vercambre Gilles, Drouet Jean-Louis, Lecompte François, Collet Catherine, Le Bot Jacques, Root Typ: a generic model to depict and analyse the root system architecture, 10.1023/b:plso.0000016540.47134.03
- Richards L. A., CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS, 10.1063/1.1745010
- Schröder Tom, Javaux Mathieu, Vanderborght Jan, Körfgen Bernd, Vereecken Harry, Effect of Local Soil Hydraulic Conductivity Drop Using a Three-Dimensional Root Water Uptake Model, 10.2136/vzj2007.0114
- Schröder Natalie, Javaux Mathieu, Vanderborght Jan, Steffen Bernhard, Vereecken Harry, Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study, 10.2136/vzj2012.0009
- Shani U, Ben-Gal A (2005) Long-term response of grapevines to salinity: osmotic effects and ion toxicity. Am J Enol Vitic 52:148–154
- Siebert S., Burke J., Faures J. M., Frenken K., Hoogeveen J., Döll P., Portmann F. T., Groundwater use for irrigation – a global inventory, 10.5194/hess-14-1863-2010
- Simunek J, Sejna M, Saito H, Sakai M, van Genuchten MT (2013) The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media. HYDRUS Softw 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA
- Skaggs Todd H., van Genuchten Martinus Th., Shouse Peter J., Poss James A., Macroscopic approaches to root water uptake as a function of water and salinity stress, 10.1016/j.agwat.2006.06.005
- Tardieu Fran�ois, Drought perception by plants Do cells of droughted plants experience water stress?, 10.1007/bf00024005
- van Genuchten M. Th., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, 10.2136/sssaj1980.03615995004400050002x
- van Genuchten M (1987) A numerical model for water and solute movement in and below the root zone. United States Department of Agriculture Agricultural Research Service U.S. Salinity Laboratory
- van Genuchten M, Hoffman G (1984) Analysis of crop salt tolerance data. In: Soil Salinity under Irrigation. Processen and Management. Springer Verlag, New York, pp 251–271
- Van Genuchten M, Leij F, Yates S (1991) The RETC code for quantifying the hydraulic functions of unsaturated soils. Riverside, California: EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS.
Bibliographic reference | Schroeder, Natalie ; Lazarovitch, Naftali ; Vanderborght, Jan ; Vereecken, Harry ; Javaux, Mathieu. Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model. In: Plant and Soil : international journal on plant-soil relationships, Vol. 377, p. 277-293 |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/142413 |