Pestiaux, Alice
[UCL]
Melchior, S.A.
Remacle, Jean-François
[UCL]
Kärnä, T.
Fichefet, Thierry
[UCL]
Lambrechts, Jonathan
[UCL]
The discretization of a diffusion equation with a strong anisotropy by a discontinuous Galerkin finite element method is investigated. This diffusion term is implemented in the tracer equation of an ocean model, thanks to a symmetric tensor that is composed of diapycnal and isopycnal diffusions. The strong anisotropy comes from the difference of magnitude order between both diffusions. As the ocean model uses interior penalty terms to ensure numerical stability,a new penalty factor is required in order to correctly deal with the anisotropy of this diffusion. Two penalty factors from the literature are improved and established from the coercivity property. One of them takes into account the diffusion in the direction normal to the interface between the elements. After comparison, the latter is better because the spurious numerical diffusion is weaker than with the penalty factor proposed in the literature. It is computed with a transformed coordinate system in which the diffusivity tensor is diagonal, using its eigenvalue decomposition. Furthermore, this numerical scheme is validated with the method of manufactured solutions. It is finally applied to simulatethe evolution of temperature and salinity due to turbulent processes in an idealized Arctic Ocean.
- Iselin C. O'D., The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths, 10.1029/tr020i003p00414
- Montgomery, American Meteor Society, 21, 87 (1940)
- Redi Martha H., Oceanic Isopycnal Mixing by Coordinate Rotation, 10.1175/1520-0485(1982)012<1154:oimbcr>2.0.co;2
- Blaise Sébastien, Comblen Richard, Legat Vincent, Remacle Jean-François, Deleersnijder Eric, Lambrechts Jonathan, A discontinuous finite element baroclinic marine model on unstructured prismatic meshes : Part I: space discretization, 10.1007/s10236-010-0358-3
- Kärnä Tuomas, Legat Vincent, Deleersnijder Eric, A baroclinic discontinuous Galerkin finite element model for coastal flows, 10.1016/j.ocemod.2012.09.009
- White Laurent, Deleersnijder Eric, Legat Vincent, A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin, 10.1016/j.ocemod.2008.01.001
- Ainsworth Mark, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, 10.1016/j.jcp.2004.01.004
- LASAINT P., RAVIART P.A., On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Elements in Partial Differential Equations (1974) ISBN:9780122083501 p.89-123, 10.1016/b978-0-12-208350-1.50008-x
- Reed WH Hill TR Triangular mesh methods for the neutron transport equation Los Alamos Scientific Laboratory Report LA-UR-73-479 1973
- Discontinuous Galerkin Methods, ISBN:9783642640988, 10.1007/978-3-642-59721-3
- Arnold Douglas N., An Interior Penalty Finite Element Method with Discontinuous Elements, 10.1137/0719052
- Hohn Michael Edward, Geostatistics and petroleum geology, ISBN:9789401059015, 10.1007/978-94-011-4425-4
- Houston Paul, Schwab Christoph, Süli Endre, Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems, 10.1137/s0036142900374111
- Gastaldi Fabio, Quarteroni Alfio, On the coupling of hyperbolic and parabolic systems: analytical and numerical approach, 10.1016/0168-9274(89)90052-4
- Croisille J. -P., Ern A., Lelièvre T., Proft J., Analysis and simulation of a coupled hyperbolic/parabolic model problem, 10.1515/1569395054012776
- Di Pietro Daniele A., Ern Alexandre, Guermond Jean-Luc, Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection, 10.1137/060676106
- Rivière Béatrice, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations : Theory and Implementation, ISBN:9780898716566, 10.1137/1.9780898717440
- Ern, Society for Industrial and Applied Mathematics (SIAM), Journal on Numerical Analysis, 29, 235 (2008)
- Griffies, American Meteor Society, 28, 805 (1998)
- Wang, Journal of Geophysical Research, 13 (2008)
- Arnold Douglas N., Brezzi Franco, Cockburn Bernardo, Marini Donatella, Discontinuous Galerkin Methods for Elliptic Problems, Lecture Notes in Computational Science and Engineering (2000) ISBN:9783642640988 p.89-101, 10.1007/978-3-642-59721-3_5
- Shahbazi Khosro, An explicit expression for the penalty parameter of the interior penalty method, 10.1016/j.jcp.2004.11.017
- Warburton T., Hesthaven J.S., On the constants in hp-finite element trace inverse inequalities, 10.1016/s0045-7825(03)00294-9
- Spivakovskaya Darya, Heemink Arnold W., Deleersnijder Eric, Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases, 10.1007/s10236-007-0102-9
- Ascher Uri M., Ruuth Steven J., Spiteri Raymond J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, 10.1016/s0168-9274(97)00056-1
- Cox, Ocean Modelling, 74, 1 (1987)
- Harvey L. D. Danny, Impact of Isopycnal Diffusion on Heat Fluxes and the Transient Response of a Two-Dimensional Ocean Model, 10.1175/1520-0485(1995)025<2166:ioidoh>2.0.co;2
- Mathieu Pierre-Philippe, Deleersnijder Eric, What is wrong with isopycnal diffusion in world ocean models?, 10.1016/s0307-904x(98)10008-2
- Geuzaine Christophe, Remacle Jean-François, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, 10.1002/nme.2579
- Lambrechts Jonathan, Comblen Richard, Legat Vincent, Geuzaine Christophe, Remacle Jean-François, Multiscale mesh generation on the sphere, 10.1007/s10236-008-0148-3
- Rhines, Mesoscale Eddies, Encyclopedia of Ocean Sciences (2009)
- Gent Peter R., Mcwilliams James C., Isopycnal Mixing in Ocean Circulation Models, 10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2
- McDougall Trevor J., Neutral Surfaces, 10.1175/1520-0485(1987)017<1950:ns>2.0.co;2
- Gent Peter R., Willebrand Jurgen, McDougall Trevor J., McWilliams James C., Parameterizing Eddy-Induced Tracer Transports in Ocean Circulation Models, 10.1175/1520-0485(1995)025<0463:peitti>2.0.co;2
- Griffies Stephen M., The Gent–McWilliams Skew Flux, 10.1175/1520-0485(1998)028<0831:tgmsf>2.0.co;2
- Steele Michael, Morley Rebecca, Ermold Wendy, PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean, 10.1175/1520-0442(2001)014<2079:pagohw>2.0.co;2
- Jackett David R., McDougall Trevor J., Feistel Rainer, Wright Daniel G., Griffies Stephen M., Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater, 10.1175/jtech1946.1
- Marotzke Jochem, Influence of Convective Adjustment on the Stability of the Thermohaline Circulation, 10.1175/1520-0485(1991)021<0903:iocaot>2.0.co;2
- Madec G the NEMO team NEMO ocean engine Technical Report 27 2008
Bibliographic reference |
Pestiaux, Alice ; Melchior, S.A. ; Remacle, Jean-François ; Kärnä, T. ; Fichefet, Thierry ; et. al. Discontinuous Galerkin finite element discretization of a strongly anisotropic diffusion operator. In: International Journal for Numerical Methods in Fluids, Vol. 75, no.5, p. 365-384 (2014) |
Permanent URL |
http://hdl.handle.net/2078.1/144729 |