Accès à distance ? S'identifier sur le proxy UCLouvain
Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations
Primary tabs
- Open access
- 347.85 K
Van Schaftingen, Jean
[UCL]

J. Bourgain and H. Brezis have obtained in 2002 some new and surprising estimates for systems of linear differential equations, dealing with the endpoint case L¹ of singular integral estimates and the critical Sobolev space W1,n(Rn). This paper presents an overview of the results, further developments over the last ten years and challenging open problems.
Document type | Article de périodique (Journal article) – Article de recherche |
---|---|
Access type | Accès mixte 1311.6624v2.pdf [accès embargo jusqu'au 01/01/2016] |
Publication date | 2014 |
Language | Anglais |
Journal information | "Journal of Fixed Point Theory and Applications" - Vol. 15, no.2, p. 273-297 (2014) |
Peer reviewed | yes |
Publisher | Birkhaeuser Verlag AG (Basel) |
issn | 1661-7738 |
e-issn | 1661-7746 |
Publication status | Publié |
Affiliation | UCL - SST/IRMP - Institut de recherche en mathématique et physique |
Links |
- Abatangelo Laura, Terracini Susanna, Solutions to nonlinear Schrödinger equations with singular electromagnetic potential and critical exponent, 10.1007/s11784-011-0053-0
- R. A. Adams and J. J. F. Fournier, Sobolev Spaces. 2nd ed., Pure and Applied Mathematics (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003.
- S. Agmon, The L p approach to the Dirichlet problem. I. Regularity theorems. Ann. Sc. Norm. Super. Pisa (3) 3 (1959), 405–448.
- S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies 2, Van Nostrand, Princeton, NJ, 1965.
- Alvino A.: Sulla diseguaglianza di Sobolev in spazi di Lorentz. Boll. Un. Mat. Ital. A 5(14), 148–156 (1977)
- Ambrosio Luigi, Coscia Alessandra, Maso Gianni Dal, Fine Properties of Functions with Bounded Deformation, 10.1007/s002050050051
- C. Amrouche and H. H. Nguyen, New estimates for the div, curl, grad operators and elliptic problems with L 1-data in the half-space. Appl. Math. Lett. 24 (2011), 697–702.
- C. Amrouche and H. H. Nguyen, New estimates for the div-curl-grad operators and elliptic problems with L 1-data in the whole space and in the half-space. J. Differential Equations 250 (2011), 3150–3195.
- Amrouche Chérif, Nguyen Huy Hoang, Elliptic problems with $L^1$-data in the half-space, 10.3934/dcdss.2012.5.369
- A. Baldi and B. Franchi, Sharp a priori estimates for div-curl systems in Heisenberg groups. J. Funct. Anal. 265 (2013), 2388–2419.
- F. Bethuel, G. Orlandi and D. Smets, Approximations with vorticity bounds for the Ginzburg-Landau functional. Commun. Contemp. Math. 6 (2004), 803–832.
- G. Bourdaud, Calcul fonctionnel dans certains espaces de Lizorkin–Triebel. Arch. Math. (Basel) 64 (1995), 42–47.
- Bourgain Jean, Brezis Haı̈m, Sur l'équation divu=f, 10.1016/s1631-073x(02)02344-0
- J. Bourgain and H. Brezis, On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16 (2003), 393–426.
- Bourgain Jean, Brezis Haïm, New estimates for the Laplacian, the div–curl, and related Hodge systems, 10.1016/j.crma.2003.12.031
- Bourgain Jean, Brezis Haim, New estimates for elliptic equations and Hodge type systems, 10.4171/jems/80
- J. Bourgain, H. Brezis and P. Mironescu, Lifting in Sobolev spaces. J. Anal. Math. 80 (2000), 37–86.
- Bourgain Jean, Brezis Haim, Mironescu Petru, H1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg–Landau equation, 10.1007/s10240-004-0019-5
- P. Bousquet and P. Mironescu, An elementary proof of an inequality of Maz’ya involving L 1 vector fields. In: Nonlinear Elliptic Partial Differential Equations, Contemp. Math. 540, Amer. Math. Soc., Providence, RI, 2011, 59–63.
- P. Bousquet, P. Mironescu and E. Russ, A limiting case for the divergence equation. Math. Z. 274 (2013), 427–460.
- P. Bousquet and J. Van Schaftingen, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators. To appear in Indiana Univ. Math. J.
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, 2011.
- Brezis Haïm, Nguyen Hoai-Minh, The Jacobian determinant revisited, 10.1007/s00222-010-0300-9
- H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1 (1995), 197–263.
- Brezis Haïm, Van Schaftingen Jean, Boundary estimates for elliptic systems with L1–data, 10.1007/s00526-007-0094-9
- H. Brezis and J. Van Schaftingen, Circulation integrals and critical Sobolev spaces: Problems of optimal constants. In: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Proc. Sympos. Pure Math. 79, Amer. Math. Soc., Providence, RI, 2008, 33–47.
- Briane Marc, Casado-Díaz Juan, Estimate of the pressure when its gradient is the divergence of a measure. Applications, 10.1051/cocv/2010037
- Briane Marc, Casado-Díaz Juan, Homogenization of Stiff Plates and Two-Dimensional High-Viscosity Stokes Equations, 10.1007/s00205-012-0520-9
- M. Briane, J. Casado-Díaz and F. Murat, The div-curl lemma “trente ans après”: An extension and an application to the G-convergence of unbounded monotone operators. J. Math. Pures Appl. (9) 91 (2009), 476–494.
- A. P. Calderón and A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952), 85–139.
- Castro Hernán, Wang Hui, A Hardy type inequality for W m,1(0, 1) functions, 10.1007/s00526-010-0322-6
- Castro Hernán, Dávila Juan, Wang Hui, A Hardy type inequality for functions, 10.1016/j.crma.2011.06.026
- Dávila Juan, Castro Hernán, Wang Hui, A Hardy type inequality for $W^{m,1}_0(\Omega)$ functions, 10.4171/jems/357
- Chanillo Sagun, Schaftingen Jean van, Subelliptic Bourgain–Brezis estimates on groups, 10.4310/mrl.2009.v16.n3.a9
- Chanillo Sagun, Yung Po-Lam, An Improved Strichartz Estimate for Systems with Divergence Free Data, 10.1080/03605302.2011.594475
- Cohen Albert, Dahmen Wolfgang, Daubechies Ingrid, DeVore Ronald, Harmonic Analysis of the space BV, 10.4171/rmi/345
- R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993), 247–286.
- Conti Sergio, Faraco Daniel, Maggi Francesco, A New Approach to Counterexamples to L1 Estimates: Korn?s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions, 10.1007/s00205-004-0350-5
- De Pauw Thierry, Moonens Laurent, Pfeffer Washek F., Charges in middle dimensions, 10.1016/j.matpur.2009.04.001
- T. De Pauw and W. F. Pfeffer, Distributions for which div v = F has a continuous solution. Comm. Pure Appl. Math. 61 (2008), 230–260.
- L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients, and some of its applications. In: Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem, 1961, 161–174.
- C. Fefferman and E. M. Stein, H p spaces of several variables. Acta Math. 129 (1972), 137–193.
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161–207.
- G. B. Folland and E. M. Stein, Estimates for the $${\bar{\partial}_b}$$ ∂ ¯ b complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 429–522.
- G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups. Mathematical Notes 28, Princeton University Press, Princeton, NJ, 1982.
- E. Gagliardo, Proprietà à di alcune classi di funzioni in più variabili. Ricerche Mat. 7 (1958), 102–137.
- Garroni Adriana, Leoni Giovanni, Ponsiglione Marcello, Gradient theory for plasticity via homogenization of discrete dislocations, 10.4171/jems/228
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1953), 1–79.
- L. Hörmander, Differentiability properties of solutions of systems of differential equations. Ark. Mat. 3 (1958), 527–535.
- L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators. Grundlehren Math. Wiss. 274, Springer, Berlin, 1985.
- J. Hounie and T. Picon, Local Gagliardo-Nirenberg estimates for elliptic systems of vector fields. Math. Res. Lett. 18 (2011), 791–804.
- T. Isobe, Topological and analytical properties of Sobolev bundles. II. Higher dimensional cases. Rev. Mat. Iberoam. 26 (2010), 729–798.
- T. Iwaniec, Integrability Theory, and the Jacobians. Lecture Notes, Universität Bonn, 1995.
- D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53 (1986), 503–523.
- G. A. Kaljabin, Descriptions of functions from classes of Besov-Lizorkin- Triebel type. In: Studies in the Theory of Differentiable Functions of Several Variables and Its Applications, VIII, Tr. Mat. Inst. Steklov. 156, 1980, 82–109 (in Russian).
- Kirchheim Bernd, Kristensen Jan, Automatic convexity of rank-1 convex functions, 10.1016/j.crma.2011.03.013
- B. Kirchheim and J. Kristensen, On rank one convex functions that are homogeneous of degree one. In preparation.
- V. I. Kolyada, On the embedding of Sobolev spaces. Mat. Zametki 54 (1993), 48–71 (in Russian); English transl.: Math. Notes 54 (1993), 908–922.
- V. I. Kolyada, On Fubini type property in Lorentz spaces. In: Recent Advances in Harmonic Analysis and Applications, Springer Proc. Math. Stat. 25, Springer, New York, 2013, 171–179.
- H. Komatsu, Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients. Math. Ann. 176 (1968), 77–86.
- L. Lanzani, Higher order analogues of exterior derivative. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), 389–398.
- L. Lanzani and A. S. Raich, On div-curl for higher order. In: Advances in Analysis: The Legacy of Elias M. Stein, Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 2014, 245–272.
- L. Lanzani and E. M. Stein, A note on div curl inequalities. Math. Res. Lett. 12 (2005), 57–61.
- E. H. Lieb and M. Loss Analysis. 2nd ed., Grad. Stud. Math. 14, Amer. Math. Soc., Providence, RI, 2001.
- J.-L. Lions and E. Magenes, Problemi ai limiti non omogenei. III. Ann. Sc. Norm. Super. Pisa (3) 15 (1961), 41–103.
- Lopatinskiĭ Ja. B., A method of reducing boundary problems for a system of differential equations of elliptic type to regular integral equations, 10.1090/trans2/089/08
- V. Maz’ya, Bourgain–Brezis type inequality with explicit constants. In: Interpolation Theory and Applications, Contemp. Math. 445, Amer. Math. Soc., Providence, RI, 2007, 247–252.
- V. Maz’ya, Estimates for differential operators of vector analysis involving L 1- norm. J. Eur. Math. Soc. (JEMS) 12 (2010), 221–240.
- V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. 2nd ed., Grundlehren Math. Wiss. 342, Springer, Heidelberg, 2011.
- Maz'ya Vladimir, Shaposhnikova Tatyana, A Collection of Sharp Dilation Invariant Integral Inequalities for Differentiable Functions, Sobolev Spaces In Mathematics I ISBN:9780387856476 p.223-247, 10.1007/978-0-387-85648-3_8
- Mironescu Petru, On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to vector fields, 10.1016/j.crma.2010.03.019
- Mitrea Irina, Mitrea Marius, A remark on the regularity of the div-curl system, 10.1090/s0002-9939-08-09671-8
- F. Murat, Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 5 (1978), 489–507.
- L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa (3) 13 (1959), 115–162.
- Ornstein Donald, A non-inequality for differential operators in the L1 norm, 10.1007/bf00253928
- W. F. Pfeffer, The Divergence Theorem and Sets of Finite Perimeter. Pure and Applied Mathematics, CRC Press, Boca Raton, FL, 2012.
- L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247–320.
- M. Rumin, Formes différentielles sur les variétés de contact. J. Differential Geom. 39 (1994), 281–330.
- M. Rumin, Differential geometry on C-C spaces and application to the Novikov- Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 985–990.
- Rumin M., Sub-Riemannian limit of the differential form spectrum of contact manifolds, 10.1007/s000390050013
- M. Rumin, Around heat decay on forms and relations of nilpotent Lie groups. In: Sémin. Théor. Spectr. Géom. 19, Univ. Grenoble I, Saint, 2001, 123–164.
- T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl. 3, de Gruyter, Berlin, 1996.
- B. J. Schmitt and M. Winkler, On embeddings between BV and $${\dot{W}^{s,p}}$$ W ˙ s , p . Preprint no. 6, Lehrstuhl I für Mathematik, RWTH Aachen, 2000.
- Schwarz Günter, Hodge Decomposition—A Method for Solving Boundary Value Problems, ISBN:9783540600169, 10.1007/bfb0095978
- S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. Algebra i Analiz 5 (1993), 206–238 (in Russain); English transl.: St. Petersburg Math. J. 5 (1994), 841–867.
- V. A. Solonnikov, Overdetermined elliptic boundary value problems. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 21 (1971), 112–158 (in Russian); English transl.: J. Sov. Math. 1 (1973), 477–512.
- V. A. Solonnikov, Inequalities for functions of the classes $${{{\dot{W}^{\vec{m}}_{{p}}}{(\mathbb{R}^n)}}}$$ W ˙ p m → ( R n ) . Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 194–210 (in Russian); English transl.: J. Sov. Math. 3 (1975), 549–564.
- Spencer D. C., Overdetermined systems of linear partial differential equations, 10.1090/s0002-9904-1969-12129-4
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser. 30, Princeton University Press, Princeton, NJ, 1970.
- E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Math. Ser. 43, Princeton University Press, Princeton, NJ, 1993.
- M. J. Strauss, Variations of Korn’s and Sobolev’s equalities. In: Partial Differential equations (Univ. California, Berkeley, Calif., 1971), Proc. Sympos. Pure Math. 23, Amer. Math. Soc., Providence, RI, 1973, 207–214.
- R. S. Strichartz, Multipliers on fractional Sobolev spaces. J. Math. Mech. 16 (1967), 1031–1060.
- R. S. Strichartz, Fubini-type theorems. Ann. Sc. Norm. Super. Pisa (3) 22 (1968), 399–408.
- E. Tadmor, Hierarchical solutions for linear equations: A constructive proof of the closed range theorem. Preprint, arXiv:1003.1525 .
- L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires. In: Journées d’Analyse Non Linéaire (Besançon, 1977), Lecture Notes in Math. 665, Springer, Berlin, 1978, 228–241.
- L. Tartar, Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics (Heriot-Watt Symposium, Vol. IV), Res. Notes in Math. 39, Pitman, Boston, MA, 1979, 136–212.
- L. Tartar, Homogénéisation et compacité par compensation. In: Séminaire Goulaouic-Schwartz (1978/1979), École Polytech., Palaiseau, 1979.
- L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 479–500.
- Temam Roger, Strang Gilbert, Functions of bounded deformation, 10.1007/bf00284617
- Triebel Hans, Theory of Function Spaces, ISBN:9783034604154, 10.1007/978-3-0346-0416-1
- H. Triebel, The Structure of Functions. Monographs in Math. 97, Birkhäuser, Basel, 2001.
- Uchiyama Akihito, A constructive proof of the Fefferman-Stein decomposition of BMO (Rn), 10.1007/bf02392729
- Van Schaftingen Jean, A simple proof of an inequality of Bourgain, Brezis and Mironescu, 10.1016/j.crma.2003.10.036
- Van Schaftingen Jean, Estimates for L1-vector fields, 10.1016/j.crma.2004.05.013
- J. Van Schaftingen, Estimates for L 1 vector fields with a second order condition. Acad. Roy. Belg. Bull. Cl. Sci. (6) 15 (2004), 103–112.
- J. Van Schaftingen, Function spaces between BMO and critical Sobolev spaces. J. Funct. Anal. 236 (2006), 490–516.
- J. Van Schaftingen, Estimates for L 1 vector fields under higher-order differential conditions. J. Eur. Math. Soc. (JEMS) 10 (2008), 867–882.
- J. Van Schaftingen, Limiting fractional and Lorentz space estimates of differential forms. Proc. Amer. Math. Soc. 138 (2010), 235–240.
- J. Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear differential operators. J. Eur. Math. Soc. (JEMS) 15 (2013), 877–921.
- Wang Yi, Yung Po-Lam, A subelliptic Bourgain–Brezis inequality, 10.4171/jems/443
- Wojtaszczyk P., Banach Spaces For Analysts, ISBN:9780511608735, 10.1017/cbo9780511608735
- Xiang Xingfei, L 3/2-estimates of vector fields with L 1 curl in a bounded domain, 10.1007/s00526-011-0473-0
- P.-L. Yung, Sobolev inequalities for (0, q) forms on CR manifolds of finite type. Math. Res. Lett. 17 (2010), 177–196.
Bibliographic reference | Van Schaftingen, Jean. Limiting Bourgain–Brezis estimates for systems of linear differential equations: Theme and variations. In: Journal of Fixed Point Theory and Applications, Vol. 15, no.2, p. 273-297 (2014) |
---|---|
Permanent URL | http://hdl.handle.net/2078.1/155931 |