HUSCAP logo Hokkaido Univ. logo

Hokkaido University Collection of Scholarly and Academic Papers >
Graduate School of Fisheries Sciences / Faculty of Fisheries Sciences >
Peer-reviewed Journal Articles, etc >

Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed

Files in This Item:
J. Oleo Sci. (2016, Honda).pdf795.26 kBPDFView/Open
Please use this identifier to cite or link to this item:http://hdl.handle.net/2115/64896

Title: Lipid Classes, Fatty Acid Composition, and Glycerolipid Molecular Species of the Red Alga Gracilaria vermiculophylla, a Prostaglandin-Producing Seaweed
Authors: Honda, Masaki Browse this author
Ishimaru, Takashi Browse this author
Itabashi, Yutaka Browse this author →KAKEN DB
Keywords: Gracilaria vermiculophylla
lipid class
fatty acid
glycerolipid
molecular species
Issue Date: Sep-2016
Journal Title: Journal of Oleo Science
Volume: 65
Issue: 9
Start Page: 723
End Page: 732
Publisher DOI: 10.5650/jos.ess16026
PMID: 27581490
Abstract: The red alga Gracilaria vermiculophylla is a well-known producer of prostaglandins, such as PGE2 and PGF2α. In this study, the characteristics of glycerolipids as substrates of prostaglandin production were clarified, and the lipid classes, fatty acid composition, and glycerolipid molecular species were investigated in detail. The major lipid classes were monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), as well as phosphatidylcholine (PC), which accounted for 43.0% of the total lipid profile. Arachidonic acid (20:4n-6), a prostaglandin precursor, and palmitic acid (16:0) were the predominant fatty acids in the total lipid profile. The 20:4n-6 content was significantly high in MGDG and PC (more than 60%), and the 16:0 content was significantly high in DGDG and SQDG (more than 50%). Chiral-phase high-performance liquid chromatography determined that fatty acids were esterified at the sn-1 and sn-2 positions of those lipids. The main glycerolipid molecular species were 20:4n-6/20:4n-6 (sn-1/sn-2) for MGDG (56.5%) and PC (40.0%), and 20:4n-6/16:0 for DGDG (75.4%) and SQDG (58.4%). Thus, it was considered that the glycerolipid molecular species containing one or two 20:4n-6 were the major substrates for prostaglandin production in G. vermiculophylla.
Type: article
URI: http://hdl.handle.net/2115/64896
Appears in Collections:水産科学院・水産科学研究院 (Graduate School of Fisheries Sciences / Faculty of Fisheries Sciences) > 雑誌発表論文等 (Peer-reviewed Journal Articles, etc)

Submitter: 板橋 豊

Export metadata:

OAI-PMH ( junii2 , jpcoar_1.0 )

MathJax is now OFF:


 

 - Hokkaido University