Journal Article FZJ-2020-02508

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Noise suppression beyond the thermal limit with nanotransistor biosensors

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Macmillan Publishers Limited, part of Springer Nature [London]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Transistor biosensors are mass-fabrication-compatible devices of interest for point of care diagnosis as well as molecular interaction studies. While the actual transistor gates in processors reach the sub-10 nm range for optimum integration and power consumption, studies on design rules for the signal-to-noise ratio (S/N) optimization in transistor-based biosensors have been so far restricted to 1 µm2 device gate area, a range where the discrete nature of the defects can be neglected. In this study, which combines experiments and theoretical analysis at both numerical and analytical levels, we extend such investigation to the nanometer range and highlight the effect of doping type as well as the noise suppression opportunities offered at this scale. In particular, we show that, when a single trap is active near the conductive channel, the noise can be suppressed even beyond the thermal limit by monitoring the trap occupancy probability in an approach analog to the stochastic resonance effect used in biological systems.

Classification:

Contributing Institute(s):
  1. Bioelektronik (IBI-3)
Research Program(s):
  1. 523 - Controlling Configuration-Based Phenomena (POF3-523) (POF3-523)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2020-07-13, last modified 2022-09-30