Journal Article FZJ-2022-01811

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Analytical and experimental study of center-line miscalibrations in Mølmer-Sørensen gates

 ;  ;  ;  ;  ;  ;

2022
Inst. Woodbury, NY

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: A major challenge for the realization of useful universal quantum computers is achieving high fidelity two-qubit entangling gate operations. However, calibration errors can affect the quantum gate operations and limit their fidelity. To reduce such errors it is desirable to have an analytical understanding and quantitative predictions of the effects that miscalibrations of gate parameters have on the gate performance. In this work, we study a systematic perturbative expansion in miscalibrated parameters of the Mølmer-Sørensen entangling gate, which is widely used in trapped-ion quantum processors. Our analytical treatment particularly focuses on systematic center-line detuning miscalibrations. Via a unitary Magnus expansion, we compute the gate evolution operator, which allows us to obtain relevant key properties such as relative phases, electronic populations, quantum state purity and fidelities. These quantities, subsequently, are used to assess the performance of the gate using the fidelity of entangled states as performance metric. We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor. The method and the results presented here can help design and calibrate high-fidelity gate operations of large-scale quantum computers.

Classification:

Contributing Institute(s):
  1. Theoretische Nanoelektronik (PGI-2)
Research Program(s):
  1. 5224 - Quantum Networking (POF4-522) (POF4-522)

Appears in the scientific report 2022
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-03-30, last modified 2023-05-22


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)