Journal Article FZJ-2022-01264

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Structure‐Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films

 ;  ;  ;  ;  ;

2021
Wiley-VCH Weinheim

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Resistive switching mechanisms underlying memristive devices are widely investigated, and the importance as well as influence of ambient conditions on the electrical performances of memristive cells are already recognized. However, detailed understanding of the ambient effect on the switching mechanism still remains a challenge. This work presents an experimental investigation on the effect of moisture on resistive switching performances of ZnO-based electrochemical metallization memory cells. ZnO thin films are grown by chemical vapor deposition (CVD) and radio frequency sputtering. Water molecules are observed to influence electrical resistance of ZnO by affecting the electronic conduction mechanism and by providing additional species for ionic conduction. By influencing dissolution and migration of ionic species underlying resistive switching events, moisture is reported to tune resistive switching parameters. In particular, the presence of H2O is responsible for a decrease of the forming and SET voltages and an increase of the ON/OFF resistance ratio in both CVD and sputtered films. The effect of moisture on resistive switching performance is found to be more pronounced in case of sputtered films where the reduced grain size is responsible for an increased adsorption of water molecules and an increased amount of possible pathways for ion migration.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 5233 - Memristive Materials and Devices (POF4-523) (POF4-523)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2022-02-07, last modified 2023-01-23


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)