Journal Article FZJ-2023-01717

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Ethylene Carbonylation to 3-Pentanone with In Situ Hydrogen via a Water–Gas Shift Reaction on Rh/CeO 2

 ;  ;  ;  ;  ;  ;  ;  ;

2023
ACS Washington, DC

ACS catalysis 13(5), 3164 - 3169 () [10.1021/acscatal.2c06123]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Alkene carbonylation, in which hydrogenation plays pivotal roles, is one of the most efficient method for the production of oxygenated chemicals like aldehydes, amides, and esters, among others. In this work, using in situ produced hydrogen via a water–gas shift (WGS) reaction, selective ethylene carbonylation to 3-pentanone was achieved instead of hydroformylation to propionaldehyde with gaseous H2 on a defective ceria-supported Rh catalyst. The interface of Rh/CeO2, which consists of oxygen vacancies and positively charged Rh, activates water, CO, and ethylene and the subsequent reactions, including the WGS reaction and ethylene carbonylation. The lean hydrogen circumstance created by the WGS reaction suppresses the hydrogenation of the propionyl group and promotes its ethylation to 3-pentanone. A redox pathway was proposed for the WGS reaction based on the in situ FTIR results, and the origin of hydrogen for ethylene carbonylation is water, as confirmed by a mass spectrometry (MS) study using d2-water as one of the reactants. This work provides a promising method for heavier ketone synthesis.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) (POF4-535)

Appears in the scientific report 2023
Database coverage:
Medline ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 10 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2023-04-04, last modified 2023-09-29


Published on 2023-02-17. Available in OpenAccess from 2024-02-17.:
Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)