- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Multi-view hockey tracking with trajectory smoothing...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Multi-view hockey tracking with trajectory smoothing and camera selection Wu, Lan
Abstract
We address the problem of multi-view multi-target tracking using multiple stationary cameras in the application of hockey tracking and test the approach with data from two cameras. The system is based on the previous work by Okuma et al. [50]. We replace AdaBoost detection with blob detection in both image coordinate systems after background subtraction. The sets of blob-detection results are then mapped to the rink coordinate system using a homography transformation. These observations are further merged into the final detection result which will be incorporated into the particle filter. In addition, we extend the particle filter to use multiple observation models, each corresponding to a view. An observation likelihood and a reference color model are also maintained for each player in each view and are updated only when the player is not occluded in that view. As a result of the expanded coverage range and multiple perspectives in the multi-view tracking, even when the target is occluded in one view, it still can be tracked as long as it is visible from another view. The multi-view tracking data are further processed by trajectory smoothing using the Maximum a posteriori smoother. Finally, automatic camera selection is performed using the Hidden Markov Model to create personalized video programs.
Item Metadata
Title |
Multi-view hockey tracking with trajectory smoothing and camera selection
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2008
|
Description |
We address the problem of multi-view multi-target tracking using multiple stationary cameras in the application of hockey tracking and test the approach with data from two cameras. The system is based on the previous work by Okuma et al. [50]. We replace AdaBoost detection with blob detection in both image coordinate systems after background subtraction. The sets of blob-detection results are then mapped to the rink coordinate system using a homography transformation. These observations are further merged into the final detection result which will be incorporated into the particle filter. In addition, we extend the particle filter to use multiple observation models, each corresponding to a view. An observation likelihood and a reference color model are also maintained for each player in each view and are updated only when the player is not occluded in that view. As a result of the expanded coverage range and multiple perspectives in the multi-view tracking, even when the target is occluded in one view, it still can be tracked as long as it is visible from another view. The multi-view tracking data are further processed by trajectory smoothing using the Maximum a posteriori smoother. Finally, automatic camera selection is performed using the Hidden Markov Model to create personalized video programs.
|
Extent |
2444767 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2008-09-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0051270
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2008-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Loading media...
Item Citations and Data
Permanent URL (DOI):
Copied to clipboard.Rights
Attribution-NonCommercial-NoDerivatives 4.0 International