UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Niobium nanowire yarns and their application as artificial muscle Mirvakili, Seyed Mohammad

Abstract

Since the discovery of carbon nanotubes, various devices have been made in different fields of science and engineering. The mechanical and electrical properties that carbon nanotubes offer make them a great candidate for use in the structure of artificial muscles. In this thesis, for the first time, we have demonstrated that metallic nanowires can be engineered to become strong and comparable to the CNT yarns in mechanical and electrical properties. The niobium yarns offer conductivity of up to 3×10⁶ S m-¹, tensile strength of up to 1.1 GPa and Young’s modulus of 19 GPa. The niobium nanowire fibres are fabricated by extracting the niobium nanowires from copper-niobium nano-composite matrix, which was made by using a severe plastic deformation process. As a practical application, torsional artificial muscles were made out of the niobium yarns by twisting and impregnating them with paraffin wax. Upon applying voltage to the twisted yarn the wax melts and expands due to the heat generated by the current. Thermal expansion of wax untwists the yarn, which translated to torsional actuation. Torsional speeds of 7,200 RPM (in a destructive test) and 1,800 RPM (continuous) were achieved. In addition to torsional actuation, niobium yarns also can provide up to 0.24% of isobaric tensile actuation along the yarn’s axis at 20 MPa load. Due to the high conductivity of the niobium yarns, the actuator can be made to actuate by even one single 1.5 V battery (for a 1 cm of niobium yarn). The electrochemical capacitance of niobium yarns was measured to be 1.3×10⁷ F m-³ at a scan rate of 25 mV s-¹ in 0.2 M TBAPF₆ salt dissolved in acetonitrile. This value is comparable to the electrochemical capacitance of the carbon multi-walled nanotube yarns.

Item Media

Loading media...

Item Citations and Data

Permanent URL (DOI):
Rights

Attribution-NonCommercial-NoDerivatives 4.0 International