Publication:
A characterization of trace-zero sets realizable by compensation in the SNIEP

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

publication.page.ispartofseries

Creative Commons license

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/45462

Abstract

The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.

Note

Bibliographic citation

Marijuán, C., & Moro, J. (2021). A characterization of trace-zero sets realizable by compensation in the SNIEP. Linear Algebra and Its Applications, 615, 42–76.

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of

Collections