A Novel Method for Setting Meaningful Thresholds for RMS-Energy Oscillation Detectors
Files
Date
2024-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3004
Ending Page
Alternative Title
Abstract
Oscillation detection and mitigation is a crucial aspect of reliable power system operation. Several transmission system operators and reliability coordinators use the RMS-energy method of oscillation detection, but the process of setting thresholds is time and labor intensive. The current industry practice in the United States is to set thresholds based on the RMS-energy's value during ambient conditions, which can often lead to nuisance alarms that require thresholds to be manually retuned. In this paper, we propose a method for setting RMS-energy thresholds that directly accounts for oscillation amplitudes specified by the user. A theoretical analysis of the statistical properties of the RMS-energy incorporates these user-specified amplitudes, resulting in thresholds that reliably detect oscillations of interest while avoiding nuisance alarms. Theoretical results are validated with simulated measurements and the real-world practicality of the method is established with publicly available field-measured data from the Grid Event Signature Library.
Description
Keywords
Monitoring, Control, and Protection, forced oscillation, phasor measurement unit, statistics
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.