TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Industrial segment anything - A case study in aircraft manufacturing, intralogistics, maintenance, repair, and overhaul
 
Options

Industrial segment anything - A case study in aircraft manufacturing, intralogistics, maintenance, repair, and overhaul

Citation Link: https://doi.org/10.15480/882.8510
Publikationstyp
Preprint
Date Issued
2023-07-24
Sprache
English
Author(s)
Moenck, Keno  orcid-logo
Flugzeug-Produktionstechnik M-23  
Wendt, Arne  orcid-logo
Flugzeug-Produktionstechnik M-23  
Prünte, Philipp Julian  orcid-logo
Flugzeug-Produktionstechnik M-23  
Koch, Julian  orcid-logo
Flugzeug-Produktionstechnik M-23  
Sahrhage, Arne 
Flugzeug-Produktionstechnik M-23  
Gierecker, Johann  orcid-logo
Flugzeug-Produktionstechnik M-23  
Schmedemann, Ole  orcid-logo
Flugzeug-Produktionstechnik M-23  
Kähler, Falko  orcid-logo
Flugzeug-Produktionstechnik M-23  
Holst, Dirk  orcid-logo
Flugzeug-Produktionstechnik M-23  
Gomse, Martin  
Flugzeug-Produktionstechnik M-23  
Schüppstuhl, Thorsten  orcid-logo
Flugzeug-Produktionstechnik M-23  
Schoepflin, Daniel  orcid-logo
TORE-DOI
10.15480/882.8510
TORE-URI
https://hdl.handle.net/11420/43160
Start Page
1
End Page
30
Citation
arXiv: 2307.12674 (2023)
Publisher DOI
10.48550/arXiv.2307.12674
Peer Reviewed
false
Deploying deep learning-based applications in specialized domains like the aircraft production industry typically suffers from the training data availability problem. Only a few datasets represent non-everyday objects, situations, and tasks. Recent advantages in research around Vision Foundation Models (VFM) opened a new area of tasks and models with high generalization capabilities in non-semantic and semantic predictions. As recently demonstrated by the Segment Anything Project, exploiting VFM's zero-shot capabilities is a promising direction in tackling the boundaries spanned by data, context, and sensor variety. Although, investigating its application within specific domains is subject to ongoing research. This paper contributes here by surveying applications of the SAM in aircraft production-specific use cases. We include manufacturing, intralogistics, as well as maintenance, repair, and overhaul processes, also representing a variety of other neighboring industrial domains. Besides presenting the various use cases, we further discuss the injection of domain knowledge.
Subjects
machine vision
image segmentation
SAM
aircraft
production
manufacturing
MRO
logistics
DDC Class
624: Civil Engineering, Environmental Engineering
Funding(s)
Rückkopplungsschleifen und Entwicklung eines Logistics Model Generators in einer automatisierten und gigitalisierten Produktionsumgebung  
Holistische Virtualisierung des Produktlebenszyklus in der Luftfahrt mit Fokus auf Bauteilherstellung und Kabinenmodifikation  
Automatisierte Produktionsversorgende Logistik  
Modulare sensorbasierte Befundung von Verkehrsflugzeugen  
Automatische Datenauswertung für die Inspektion von Luftfahrszeugtriebwerken mit einer in ein Endoskop integrierten MEMS-3D-Kamera  
Datenauswertung für ein in ein Boroskop integriertes Weißlichtinterferometer  
Intelligente Luftfahrttaugliche Identifikationstechnologien für die Supply Chain  
Nachhaltige Flugzeugrumpf Industrialisierung - Fokusbereich 2: Kabine und Systeme  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

2307.12674.pdf

Size

36.8 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback